Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine

L’auxine est une hormone végétale impliquée dans presque toutes les étapes du développement des plantes, de la formation de l’embryon jusqu’à la floraison, déterminant la position des organes et donc la structure de la plante. Comme pour les autres hormones, la perception de l’auxine est suivie par...

Full description

Bibliographic Details
Main Author: Martín-Arevalillo, Raquel
Other Authors: Grenoble Alpes
Language:en
Published: 2017
Subjects:
Arf
570
Online Access:http://www.theses.fr/2017GREAV073
id ndltd-theses.fr-2017GREAV073
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Auxine
Arf
Topless
Répression
Transcription
Charophyte
Auxin
Arf
Topless
Repression
Transcription
Charophyte
570
spellingShingle Auxine
Arf
Topless
Répression
Transcription
Charophyte
Auxin
Arf
Topless
Repression
Transcription
Charophyte
570
Martín-Arevalillo, Raquel
Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
description L’auxine est une hormone végétale impliquée dans presque toutes les étapes du développement des plantes, de la formation de l’embryon jusqu’à la floraison, déterminant la position des organes et donc la structure de la plante. Comme pour les autres hormones, la perception de l’auxine est suivie par une transduction du signal qui produit une série de changements dans les cellules végétales dont des régulations transcriptionnelles. Cette thèse est divisée en 3 chapitres, chacun d’eux étant focalisé sur des aspects structuraux, moléculaires et évolutifs de différentes protéines impliquées dans la régulation des gènes de réponse à l’auxine.Nous avons tout d’abord centré nos études sur TOPLESS (TPL), un corépresseur qui agit au niveau de la répression des gènes de réponse à l’auxine, mais aussi dans d’autres processus végétaux compte tenu de son interaction avec de nombreux répresseurs transcriptionnels. Nous avons déterminé la structure de la partie N-terminale de TPL et compris comment TPL interagit avec différents partenaires au niveau d’un même site de liaison. Nous avons alors démontré que TPL forme un tétramère à l’aide d’une surface de tétramérisation constituée par un nouveau domaine, le domaine CRA, qui fait aussi partie du site de liaison. Les résidus impliqués dans la tétramérisation et l’interaction avec des partenaires sont très conservés depuis des centaines de millions d’années montrant ainsi l’importance du rôle de TPL depuis l’origine des plantes. Enfin, les similarités de structure entre TPL et d’autres corépresseurs qui possèdent des domaines similaires mais possédant une fonction différente montrent un bel exemple de la manière dont l’évolution joue avec des domaines protéiques pour créer de nouvelles fonctions.Nous avons ensuite étudié les préférences de liaison à l’ADN des facteurs de transcription de la réponse à l’auxine (ARF). Pour cela nous avons utilisé une combinaison d’analyses bio-informatiques de données de DAP-seq sur la liaison des ARFs sur le génome, des tests d’interaction ADN-protéine in vitro et de la modélisation de structures. Nos résultats indiquent que les différents ARFs ont des sites préférentiels de liaison sur le génome et que ces préférences sont déterminées par l’orientation et l’espacement entre motifs de liaison. Enfin, ces études suggèrent qu’en fonction du site de liaison, les ARFs pourraient se lier avec différentes conformations à l’aide de surfaces de dimérisation qui ne sont pas encore décrites. Ces résultats permettent d’expliquer comment différents ARFs coexprimés dans la même cellule peuvent fonctionner ensemble pour contribuer à une réponse transcriptionnelle à l’auxine spécifique et robuste.Finalement, nous avons remonté le temps pour positionner l’origine de la voie de signalisation de l’auxine chez les plantes. Pour cela, nous avons recherché des homologues des protéines de la voie de signalisation de l’auxine dans des algues vertes charophytes, les ancêtres les plus lointains (450 Millions d’années) des plantes. Nous avons alors trouvé un homologue des ARFs et TPL chez les premières algues multicellulaires (Chlorokybus atmophyticus). La caractérisation biochimique de l’ARF de C. atmophyticus indique qu’il partageait déjà les mêmes propriétés que les ARFs des plantes terrestres et était aussi capable d’interagir avec TPL comme certains ARFs. L’absence d’homologues du récepteur de l’auxine chez ces algues primitives indique cependant que la dépendance à l’auxine aurait été acquise plus tard avec l’apparition du système corécepteur TIR1/AFB-Aux/IAA après la divergence des charophytes vers les plantes terrestres. === Auxin is a plant hormone implicated in almost all plant developmental stages, since the embryo formation till flowering, determining the position of the organs in the plant and thus, its whole structure. As for any other hormone, auxin perception is followed by a signal transduction that finishes in a series of changes in a plant cell, including transcriptional changes. This thesis is divided in 3 chapters, each with a focus on the structural, molecular and evolutionary aspects of different proteins involved in the regulation of auxin genes response.First, we focused our studies on TOPLESS (TPL), a co-repressor implicated, not only in auxin responsive genes repression, but also in many other plant processes due to its interactions with numerous transcriptional repressors in plants. Our determination of the TPL N-terminal structure allowed us to understand that TPL can interact with different partners through the same binding site. Moreover, it revealed that TPL is a tetrameric protein, with the tetramerization interface formed by a newly identify domain, the CRA domain, that is also part of the binding site. The high residues conservation in both tetramerization interface and TPL binding site since m.y.a indicates the importance of TPL role since the origin of plants. This work also shows that the structural similarities between TPL and other co-repressor with similar domains but different function nicely exemplify how evolution plays with common features for creating new functions.Second, we studied ARF proteins, the transcription factors of the auxin transcriptional response, with a focus on their DNA binding preferences. For this, we used a combination of bioinformatic analyses of DAP-seq ARFs genomic binding, with in vitro DNA binding tests and structure modelling. Our results point out that different ARFs can have different preferential binding sites within the genome, with these preferences being determined by the orientation and spacing of the binding motifs. Moreover, our studies suggest that depending on the binding site, ARFs could bind with different conformations using dimerization interfaces not yet discovered. These results can explain how different ARFs co-expressed inside a plant cell can collaborate to the specificity and robustness of auxin transcriptional response by differential bindings to the genome.Finally, we travelled back in time to position the origin of auxin signalling pathway in the evolution of plants. Here we looked for protein homologues of the auxin signalling pathway in charophyte green algae, the most ancient plants ancestor (450 M years). This search retrieved an ARF and a TPL homologue in the first multicellular charophyte algae (Chlorokybus atmophyticus). The biochemical characterization of C. atmophyticus ARF indicated that it presented already the same properties of the ARFs from land plants and that it was able to interact with TPL protein, as it is the case for some ARFs. The absence of auxin receptor homologues in these primitive algae indicates however that auxin-dependency appeared with the acquisition of TIR1/AFB-Aux/IAA coreceptor system, after charophytes divergence into land plants.
author2 Grenoble Alpes
author_facet Grenoble Alpes
Martín-Arevalillo, Raquel
author Martín-Arevalillo, Raquel
author_sort Martín-Arevalillo, Raquel
title Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
title_short Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
title_full Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
title_fullStr Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
title_full_unstemmed Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
title_sort aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine
publishDate 2017
url http://www.theses.fr/2017GREAV073
work_keys_str_mv AT martinarevalilloraquel aspectsfonctionnelsstructurauxetevolutifsdelareponsetranscriptionnellealauxine
AT martinarevalilloraquel functionalstructuralandevolutionaryaspectsoftheauxintranscriptionalresponse
_version_ 1719287653509103616
spelling ndltd-theses.fr-2017GREAV0732019-11-07T03:32:19Z Aspects fonctionnels, structuraux et évolutifs de la réponse transcriptionnelle à l’auxine Functional, structural and evolutionary aspects of the auxin transcriptional response Auxine Arf Topless Répression Transcription Charophyte Auxin Arf Topless Repression Transcription Charophyte 570 L’auxine est une hormone végétale impliquée dans presque toutes les étapes du développement des plantes, de la formation de l’embryon jusqu’à la floraison, déterminant la position des organes et donc la structure de la plante. Comme pour les autres hormones, la perception de l’auxine est suivie par une transduction du signal qui produit une série de changements dans les cellules végétales dont des régulations transcriptionnelles. Cette thèse est divisée en 3 chapitres, chacun d’eux étant focalisé sur des aspects structuraux, moléculaires et évolutifs de différentes protéines impliquées dans la régulation des gènes de réponse à l’auxine.Nous avons tout d’abord centré nos études sur TOPLESS (TPL), un corépresseur qui agit au niveau de la répression des gènes de réponse à l’auxine, mais aussi dans d’autres processus végétaux compte tenu de son interaction avec de nombreux répresseurs transcriptionnels. Nous avons déterminé la structure de la partie N-terminale de TPL et compris comment TPL interagit avec différents partenaires au niveau d’un même site de liaison. Nous avons alors démontré que TPL forme un tétramère à l’aide d’une surface de tétramérisation constituée par un nouveau domaine, le domaine CRA, qui fait aussi partie du site de liaison. Les résidus impliqués dans la tétramérisation et l’interaction avec des partenaires sont très conservés depuis des centaines de millions d’années montrant ainsi l’importance du rôle de TPL depuis l’origine des plantes. Enfin, les similarités de structure entre TPL et d’autres corépresseurs qui possèdent des domaines similaires mais possédant une fonction différente montrent un bel exemple de la manière dont l’évolution joue avec des domaines protéiques pour créer de nouvelles fonctions.Nous avons ensuite étudié les préférences de liaison à l’ADN des facteurs de transcription de la réponse à l’auxine (ARF). Pour cela nous avons utilisé une combinaison d’analyses bio-informatiques de données de DAP-seq sur la liaison des ARFs sur le génome, des tests d’interaction ADN-protéine in vitro et de la modélisation de structures. Nos résultats indiquent que les différents ARFs ont des sites préférentiels de liaison sur le génome et que ces préférences sont déterminées par l’orientation et l’espacement entre motifs de liaison. Enfin, ces études suggèrent qu’en fonction du site de liaison, les ARFs pourraient se lier avec différentes conformations à l’aide de surfaces de dimérisation qui ne sont pas encore décrites. Ces résultats permettent d’expliquer comment différents ARFs coexprimés dans la même cellule peuvent fonctionner ensemble pour contribuer à une réponse transcriptionnelle à l’auxine spécifique et robuste.Finalement, nous avons remonté le temps pour positionner l’origine de la voie de signalisation de l’auxine chez les plantes. Pour cela, nous avons recherché des homologues des protéines de la voie de signalisation de l’auxine dans des algues vertes charophytes, les ancêtres les plus lointains (450 Millions d’années) des plantes. Nous avons alors trouvé un homologue des ARFs et TPL chez les premières algues multicellulaires (Chlorokybus atmophyticus). La caractérisation biochimique de l’ARF de C. atmophyticus indique qu’il partageait déjà les mêmes propriétés que les ARFs des plantes terrestres et était aussi capable d’interagir avec TPL comme certains ARFs. L’absence d’homologues du récepteur de l’auxine chez ces algues primitives indique cependant que la dépendance à l’auxine aurait été acquise plus tard avec l’apparition du système corécepteur TIR1/AFB-Aux/IAA après la divergence des charophytes vers les plantes terrestres. Auxin is a plant hormone implicated in almost all plant developmental stages, since the embryo formation till flowering, determining the position of the organs in the plant and thus, its whole structure. As for any other hormone, auxin perception is followed by a signal transduction that finishes in a series of changes in a plant cell, including transcriptional changes. This thesis is divided in 3 chapters, each with a focus on the structural, molecular and evolutionary aspects of different proteins involved in the regulation of auxin genes response.First, we focused our studies on TOPLESS (TPL), a co-repressor implicated, not only in auxin responsive genes repression, but also in many other plant processes due to its interactions with numerous transcriptional repressors in plants. Our determination of the TPL N-terminal structure allowed us to understand that TPL can interact with different partners through the same binding site. Moreover, it revealed that TPL is a tetrameric protein, with the tetramerization interface formed by a newly identify domain, the CRA domain, that is also part of the binding site. The high residues conservation in both tetramerization interface and TPL binding site since m.y.a indicates the importance of TPL role since the origin of plants. This work also shows that the structural similarities between TPL and other co-repressor with similar domains but different function nicely exemplify how evolution plays with common features for creating new functions.Second, we studied ARF proteins, the transcription factors of the auxin transcriptional response, with a focus on their DNA binding preferences. For this, we used a combination of bioinformatic analyses of DAP-seq ARFs genomic binding, with in vitro DNA binding tests and structure modelling. Our results point out that different ARFs can have different preferential binding sites within the genome, with these preferences being determined by the orientation and spacing of the binding motifs. Moreover, our studies suggest that depending on the binding site, ARFs could bind with different conformations using dimerization interfaces not yet discovered. These results can explain how different ARFs co-expressed inside a plant cell can collaborate to the specificity and robustness of auxin transcriptional response by differential bindings to the genome.Finally, we travelled back in time to position the origin of auxin signalling pathway in the evolution of plants. Here we looked for protein homologues of the auxin signalling pathway in charophyte green algae, the most ancient plants ancestor (450 M years). This search retrieved an ARF and a TPL homologue in the first multicellular charophyte algae (Chlorokybus atmophyticus). The biochemical characterization of C. atmophyticus ARF indicated that it presented already the same properties of the ARFs from land plants and that it was able to interact with TPL protein, as it is the case for some ARFs. The absence of auxin receptor homologues in these primitive algae indicates however that auxin-dependency appeared with the acquisition of TIR1/AFB-Aux/IAA coreceptor system, after charophytes divergence into land plants. Electronic Thesis or Dissertation Text en http://www.theses.fr/2017GREAV073 Martín-Arevalillo, Raquel 2017-11-27 Grenoble Alpes Dumas, Renaud