Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.

Ces travaux ont pour objet la synthèse et la caractérisation de nouveaux électrolytes polymères pour batterie lithium métal polymère (LMP). L’objectif principal de ces électrolytes est de combiner une conductivité ionique élevée jusqu’à basse température et une résistance efficace contre les dendrit...

Full description

Bibliographic Details
Main Author: Lassagne, Adrien
Other Authors: Grenoble Alpes
Language:fr
Published: 2017
Subjects:
540
Online Access:http://www.theses.fr/2017GREAI063
id ndltd-theses.fr-2017GREAI063
record_format oai_dc
spelling ndltd-theses.fr-2017GREAI0632019-10-08T03:33:12Z Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère. Synthesis and characterization of new copolymer electrolytes for lithium metal polymer batteries Batterie Electrolyte Copolymères à blocs Battery Electrolyte Bloc copolymers 540 Ces travaux ont pour objet la synthèse et la caractérisation de nouveaux électrolytes polymères pour batterie lithium métal polymère (LMP). L’objectif principal de ces électrolytes est de combiner une conductivité ionique élevée jusqu’à basse température et une résistance efficace contre les dendrites de lithium. Pour y parvenir, trois catégories de copolymères à bloc ont été élaborés, ils permettent d’obtenir une synergie de propriétés à priori antagonistes au sein d’un même matériau. Premièrement, la rigidité du polystyrène (PS) a été combinée à la conductivité du polyoxyéthylène (POE) dopé avec un sel de lithium (LiTFSI). Le POE a été préalablement modifié pour en abaisser la température de fusion (Tf) initialement située à 60°C, ce qui permet d’atteindre de hautes conductivités (7.10-5 S.cm-1) à 40°C, associées à un module d’Young de 0,3 MPa. Cependant, les bonnes conductivités de ces matériaux ne sont assurées que par une petite fraction de Li+ (t+=0,15). Cela crée des gradients de concentration qui limitent les performances des batteries. Pour pallier cela, l’anion TFSI a été greffé sur le bloc PS (PSTFSI), augmentant le t+ à 1. Le bloc PSTFSI combiné à du POE modifié a permis des conductivités remarquables pour un électrolytes solide (10-6 S.cm-1 @ 40°C). Dans un second temps, l’ajout d’une chaine perfluorée entre le PS et l’anion a permis un gain supplémentaire de conductivité par rapport au PSTFSI (2.10-5 S.cm-1 @ 60°C), uniquement assurée par les Li+. Dans chacune des trois catégories d’électrolytes plusieurs compositions ont été synthétisées, nous permettant de suivre l’impact de cette composition sur les morphologies, les propriétés thermodynamique et mécanique ainsi que sur les propriétés de transport. Finalement, des batteries LMP de laboratoire ont été assemblées avec les meilleurs électrolytes. This work deals with synthesis and characterization of new polymer electrolytes for lithium metal polymer (LMP) batteries. The main challenge of polymer electrolytes is to combine both high ionic conductivity at low temperature and good mechanical properties. To overcome these issues, block copolymers have been designed. Remarkable properties are reached thanks to the self-assembly of these triblock copolymers. Mechanical properties are given by stiff polystyrene (PS) domains whereas ionic mobility operates in an ionophilic phase, polyoxyethylene (POE) with a lithium salt (LiTFSI). By introducing chemical defects in the POE backbone, melting temperature of the copolymer has been considerably lowered leading to conductivities of about 7.10-5 S.cm-1 and a Young’s modulus of 0.3 MPa at 40°C. If interesting properties are obtained thanks to this strategy, the small fraction of conductivity insured by lithium ions (t+=0.15) remains an issue. The low t+ leads to large concentration gradients limiting the performances of the system. In a second approach, TFSI anions have been covalently tethered on the PS backbone, raising the t+ to 1. An important increase of Li+ conductivity was obtained by adding a perfluorinated spacer between PS and TFSI moieties, with an ionophilic phase based on PEO (2.10-5 S.cm-1 @ 60°C). The chemical modification of the PEO block leads to Li+ conductivities of 10-6 S.cm-1 at 40°C. The composition of these different copolymers have been varied and their structural, thermal, mechanical and transport properties have been studied. Finally the best electrolytes of each category have been assessed in a full cell configuration. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2017GREAI063 Lassagne, Adrien 2017-07-06 Grenoble Alpes Bouchet, Renaud Lojoiu, Cristina
collection NDLTD
language fr
sources NDLTD
topic Batterie
Electrolyte
Copolymères à blocs
Battery
Electrolyte
Bloc copolymers
540
spellingShingle Batterie
Electrolyte
Copolymères à blocs
Battery
Electrolyte
Bloc copolymers
540
Lassagne, Adrien
Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
description Ces travaux ont pour objet la synthèse et la caractérisation de nouveaux électrolytes polymères pour batterie lithium métal polymère (LMP). L’objectif principal de ces électrolytes est de combiner une conductivité ionique élevée jusqu’à basse température et une résistance efficace contre les dendrites de lithium. Pour y parvenir, trois catégories de copolymères à bloc ont été élaborés, ils permettent d’obtenir une synergie de propriétés à priori antagonistes au sein d’un même matériau. Premièrement, la rigidité du polystyrène (PS) a été combinée à la conductivité du polyoxyéthylène (POE) dopé avec un sel de lithium (LiTFSI). Le POE a été préalablement modifié pour en abaisser la température de fusion (Tf) initialement située à 60°C, ce qui permet d’atteindre de hautes conductivités (7.10-5 S.cm-1) à 40°C, associées à un module d’Young de 0,3 MPa. Cependant, les bonnes conductivités de ces matériaux ne sont assurées que par une petite fraction de Li+ (t+=0,15). Cela crée des gradients de concentration qui limitent les performances des batteries. Pour pallier cela, l’anion TFSI a été greffé sur le bloc PS (PSTFSI), augmentant le t+ à 1. Le bloc PSTFSI combiné à du POE modifié a permis des conductivités remarquables pour un électrolytes solide (10-6 S.cm-1 @ 40°C). Dans un second temps, l’ajout d’une chaine perfluorée entre le PS et l’anion a permis un gain supplémentaire de conductivité par rapport au PSTFSI (2.10-5 S.cm-1 @ 60°C), uniquement assurée par les Li+. Dans chacune des trois catégories d’électrolytes plusieurs compositions ont été synthétisées, nous permettant de suivre l’impact de cette composition sur les morphologies, les propriétés thermodynamique et mécanique ainsi que sur les propriétés de transport. Finalement, des batteries LMP de laboratoire ont été assemblées avec les meilleurs électrolytes. === This work deals with synthesis and characterization of new polymer electrolytes for lithium metal polymer (LMP) batteries. The main challenge of polymer electrolytes is to combine both high ionic conductivity at low temperature and good mechanical properties. To overcome these issues, block copolymers have been designed. Remarkable properties are reached thanks to the self-assembly of these triblock copolymers. Mechanical properties are given by stiff polystyrene (PS) domains whereas ionic mobility operates in an ionophilic phase, polyoxyethylene (POE) with a lithium salt (LiTFSI). By introducing chemical defects in the POE backbone, melting temperature of the copolymer has been considerably lowered leading to conductivities of about 7.10-5 S.cm-1 and a Young’s modulus of 0.3 MPa at 40°C. If interesting properties are obtained thanks to this strategy, the small fraction of conductivity insured by lithium ions (t+=0.15) remains an issue. The low t+ leads to large concentration gradients limiting the performances of the system. In a second approach, TFSI anions have been covalently tethered on the PS backbone, raising the t+ to 1. An important increase of Li+ conductivity was obtained by adding a perfluorinated spacer between PS and TFSI moieties, with an ionophilic phase based on PEO (2.10-5 S.cm-1 @ 60°C). The chemical modification of the PEO block leads to Li+ conductivities of 10-6 S.cm-1 at 40°C. The composition of these different copolymers have been varied and their structural, thermal, mechanical and transport properties have been studied. Finally the best electrolytes of each category have been assessed in a full cell configuration.
author2 Grenoble Alpes
author_facet Grenoble Alpes
Lassagne, Adrien
author Lassagne, Adrien
author_sort Lassagne, Adrien
title Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
title_short Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
title_full Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
title_fullStr Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
title_full_unstemmed Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
title_sort synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère.
publishDate 2017
url http://www.theses.fr/2017GREAI063
work_keys_str_mv AT lassagneadrien syntheseetcaracterisationdenouveauxelectrolytescopolymerespourbatterieslithiummetalpolymere
AT lassagneadrien synthesisandcharacterizationofnewcopolymerelectrolytesforlithiummetalpolymerbatteries
_version_ 1719263200088686592