Sur l'existence de champs browniens fractionnaires indexés par des variétés

Cette thèse porte sur l'existence de champs browniens fractionnaires indexés par des variétés riemanniennes. Ces objets héritent des propriétés qui font le succès du mouvement brownien fractionnaire classique (H-autosimilarité des trajectoires ajustable, accroissements stationnaires), mais auto...

Full description

Bibliographic Details
Main Author: Venet, Nil
Other Authors: Toulouse 3
Language:en
Published: 2016
Subjects:
Online Access:http://www.theses.fr/2016TOU30377/document
id ndltd-theses.fr-2016TOU30377
record_format oai_dc
spelling ndltd-theses.fr-2016TOU303772018-10-27T04:33:49Z Sur l'existence de champs browniens fractionnaires indexés par des variétés On the existence of fractional brownian fields indexed by manifolds Champ aléatoire Mouvement brownien Fractionnaire Exposant de Hurst Auto-similarité Variété riemannienne Random field Brownian motion Fractional Hurst exponent Autosimilarity Riemannian manifold Cette thèse porte sur l'existence de champs browniens fractionnaires indexés par des variétés riemanniennes. Ces objets héritent des propriétés qui font le succès du mouvement brownien fractionnaire classique (H-autosimilarité des trajectoires ajustable, accroissements stationnaires), mais autorisent à considérer des applications où les données sont portées par un espace qui peut par exemple être courbé ou troué. L'existence de ces champs n'est assurée que lorsque la quantité 2H est inférieure à l'indice fractionnaire de la variété, qui n'est connu que dans un petit nombre d'exemples. Dans un premier temps nous donnons une condition nécessaire pour l'existence de champ brownien fractionnaire. Dans le cas du champ brownien (correspondant à H=1/2) indexé par des variétés qui ont des géodésiques fermées minimales, cette condition s'avère très contraignante : nous donnons des résultats de non-existence dans ce cadre, et montrons notamment qu'il n'existe pas de champ brownien indexé par une variété compacte non simplement connexe. La condition nécessaire donne également une preuve courte d'un fait attendu qui est la non-dégénérescence du champ brownien indexé par les espaces hyperboliques réels. Dans un second temps nous montrons que l'indice fractionnaire du cylindre est nul, ce qui constitue un exemple totalement dégénéré. Nous en déduisons que l'indice fractionnaire d'un espace métrique n'est pas continu par rapport à la convergence de Gromov-Hausdorff. Nous généralisons ce résultat sur le cylindre à un produit cartésien qui possède une géodésique fermée minimale, et donnons une majoration de l'indice fractionnaire de surfaces asymptotiquement proches du cylindre au voisinage d'une géodésique fermée minimale. The aim of the thesis is the study of the existence of fractional Brownian fields indexed by Riemannian manifolds. Those fields inherit key properties of the classical fractional Brownian motion (sample paths with self-similarity of adjustable parameter H, stationary increments), while allowing to consider applications with data indexed by a space which can be for example curved or with a hole. The existence of those fields is only insured when the quantity 2H is inferior or equal to the fractional index of the manifold, which is known only in a few cases. In a first part we give a necessary condition for the fractional Brownian field to exist. In the case of the Brownian field (corresponding to H=1/2) indexed by a manifold with minimal closed geodesics this condition happens to be very restrictive. We give several nonexistence results in this situation. In particular we show that there exists no Brownian field indexed by a nonsimply connected compact manifold. Our necessary condition also gives a short proof of an expected result: we prove the nondegeneracy of fractional Brownian fields indexed by the real hyperbolic spaces. In a second part we show that the fractional index of the cylinder is null, which gives a totally degenerate case. We deduce from this result that the fractional index of a metric space is noncontinuous with respect to the Gromov-Hausdorff convergence. We generalise this result about the cylinder to a Cartesian product with a closed minimal geodesic. Furthermore we give a bound of the fractional index of surfaces asymptotically close to the cylinder in the neighbourhood of a closed minimal geodesic. Electronic Thesis or Dissertation Text en http://www.theses.fr/2016TOU30377/document Venet, Nil 2016-07-19 Toulouse 3 Cohen, Serge
collection NDLTD
language en
sources NDLTD
topic Champ aléatoire
Mouvement brownien
Fractionnaire
Exposant de Hurst
Auto-similarité
Variété riemannienne
Random field
Brownian motion
Fractional
Hurst exponent
Autosimilarity
Riemannian manifold

spellingShingle Champ aléatoire
Mouvement brownien
Fractionnaire
Exposant de Hurst
Auto-similarité
Variété riemannienne
Random field
Brownian motion
Fractional
Hurst exponent
Autosimilarity
Riemannian manifold

Venet, Nil
Sur l'existence de champs browniens fractionnaires indexés par des variétés
description Cette thèse porte sur l'existence de champs browniens fractionnaires indexés par des variétés riemanniennes. Ces objets héritent des propriétés qui font le succès du mouvement brownien fractionnaire classique (H-autosimilarité des trajectoires ajustable, accroissements stationnaires), mais autorisent à considérer des applications où les données sont portées par un espace qui peut par exemple être courbé ou troué. L'existence de ces champs n'est assurée que lorsque la quantité 2H est inférieure à l'indice fractionnaire de la variété, qui n'est connu que dans un petit nombre d'exemples. Dans un premier temps nous donnons une condition nécessaire pour l'existence de champ brownien fractionnaire. Dans le cas du champ brownien (correspondant à H=1/2) indexé par des variétés qui ont des géodésiques fermées minimales, cette condition s'avère très contraignante : nous donnons des résultats de non-existence dans ce cadre, et montrons notamment qu'il n'existe pas de champ brownien indexé par une variété compacte non simplement connexe. La condition nécessaire donne également une preuve courte d'un fait attendu qui est la non-dégénérescence du champ brownien indexé par les espaces hyperboliques réels. Dans un second temps nous montrons que l'indice fractionnaire du cylindre est nul, ce qui constitue un exemple totalement dégénéré. Nous en déduisons que l'indice fractionnaire d'un espace métrique n'est pas continu par rapport à la convergence de Gromov-Hausdorff. Nous généralisons ce résultat sur le cylindre à un produit cartésien qui possède une géodésique fermée minimale, et donnons une majoration de l'indice fractionnaire de surfaces asymptotiquement proches du cylindre au voisinage d'une géodésique fermée minimale. === The aim of the thesis is the study of the existence of fractional Brownian fields indexed by Riemannian manifolds. Those fields inherit key properties of the classical fractional Brownian motion (sample paths with self-similarity of adjustable parameter H, stationary increments), while allowing to consider applications with data indexed by a space which can be for example curved or with a hole. The existence of those fields is only insured when the quantity 2H is inferior or equal to the fractional index of the manifold, which is known only in a few cases. In a first part we give a necessary condition for the fractional Brownian field to exist. In the case of the Brownian field (corresponding to H=1/2) indexed by a manifold with minimal closed geodesics this condition happens to be very restrictive. We give several nonexistence results in this situation. In particular we show that there exists no Brownian field indexed by a nonsimply connected compact manifold. Our necessary condition also gives a short proof of an expected result: we prove the nondegeneracy of fractional Brownian fields indexed by the real hyperbolic spaces. In a second part we show that the fractional index of the cylinder is null, which gives a totally degenerate case. We deduce from this result that the fractional index of a metric space is noncontinuous with respect to the Gromov-Hausdorff convergence. We generalise this result about the cylinder to a Cartesian product with a closed minimal geodesic. Furthermore we give a bound of the fractional index of surfaces asymptotically close to the cylinder in the neighbourhood of a closed minimal geodesic.
author2 Toulouse 3
author_facet Toulouse 3
Venet, Nil
author Venet, Nil
author_sort Venet, Nil
title Sur l'existence de champs browniens fractionnaires indexés par des variétés
title_short Sur l'existence de champs browniens fractionnaires indexés par des variétés
title_full Sur l'existence de champs browniens fractionnaires indexés par des variétés
title_fullStr Sur l'existence de champs browniens fractionnaires indexés par des variétés
title_full_unstemmed Sur l'existence de champs browniens fractionnaires indexés par des variétés
title_sort sur l'existence de champs browniens fractionnaires indexés par des variétés
publishDate 2016
url http://www.theses.fr/2016TOU30377/document
work_keys_str_mv AT venetnil surlexistencedechampsbrowniensfractionnairesindexespardesvarietes
AT venetnil ontheexistenceoffractionalbrownianfieldsindexedbymanifolds
_version_ 1718787833407209472