Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells

Ce travail a porté sur la synthèse et caractérisations structurales, optiques et électriques des films d’oxyde d'étain (SnOx) dopés avec des éléments de terres rares (RE: Néodyme, Praséodyme ou Ytterbium). L’objectif est de démontrer la conversion de photons UV voire Visible en photons rouges v...

Full description

Bibliographic Details
Main Author: Bouras, Karima
Other Authors: Strasbourg
Language:en
Published: 2016
Subjects:
TCO
Si
Online Access:http://www.theses.fr/2016STRAD011/document
id ndltd-theses.fr-2016STRAD011
record_format oai_dc
spelling ndltd-theses.fr-2016STRAD0112018-06-08T04:24:44Z Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells Elaboration et caractérisation des oxydes transparents conducteurs dopés aux terres rares pour la conversion des photons pour le photovoltaïque Oxydes TCO Terres rares SnO2 Conversion de photons Cellules solaires CIGS Si Oxides TCO Rare earths SnO2 Photons conversion Solar cells Si CIGS Sputtering 537.6 621.38 Ce travail a porté sur la synthèse et caractérisations structurales, optiques et électriques des films d’oxyde d'étain (SnOx) dopés avec des éléments de terres rares (RE: Néodyme, Praséodyme ou Ytterbium). L’objectif est de démontrer la conversion de photons UV voire Visible en photons rouges via ces films RE :SnOx, tout en conservant leurs propriétés d’oxydes transparents conducteurs. Les films ont été produits par des méthodes chimiques (sol-gel, précipitation) ou physiques (pulvérisation cathodique). Grâce à des analyses fines, nous avons pu corréler les propriétés structurales et de composition des couches RE :SnOx avec leurs propriétés d’émission de photons. Nous avons pu établir les conditions optimales de conversion photonique dans des systèmes à une seule ou double terre rare. Les mécanismes régissant le transfert dans ces films ont été avancés. Enfin, nous avons appliqué ces couches minces RE :SnOx optimisés sur des cellules solaires en silicium et en CIGS et nous avons montré une amélioration des paramètres photovoltaïques du dispositif ainsi qu’un net gain dans la réponse spectrale de la cellule dans l’UV. Spectral conversion using lanthanide doped materials with excellent performances is a great challenging topic and of particular interest for photovoltaic. This work aims at functionalizing transparent conductive oxide materials with rare earth elements for photons conversion purpose without affecting transparency and transport properties of the TCO. The spectral conversion targeted in this thesis is of type “down”, in other words, we aim at converting high energy UV photons into low energy visible or NIR photons useful to solar cells. For this purpose we investigated the doping process of SnO2 as a host material with different rare earths such as Nd, Tb, Pr, and Yb. To understand the insertion process and the optical activation of the rare earth, RE-doped SnO2 nanoparticles (powders) have been synthesised by two chemical methods: co-precipitation and sol-gel. The results have shown an efficient insertion of the RE into the SnO2 structure with excellent emission properties. In view of application of RE-doped SnOx thin films to solar cells, studies concerning NIR emitting RE have been conducted (Nd, Yb, and co-doping with Yb and Nd) using sputtering. Several deposition parameters and post deposition treatments have been done in order to find the best chemical environment favourable to the RE emission. We have precisely identified the region of the UV light converted into NIR photons and proposed several energy transfer mechanisms occurring between the host SnOx and the REs. In case of co-doping, a second spectral conversion process has been identified; visible photons can be efficiently converted into NIR photons through energy transfer from Nd3+ to Yb3+ ions. Finally, application of these conversion layers to solar cells such as CIGS and Si based have shown an improvement of the cells characteristics, among others the Field factor, the cell efficiency and the increase of the spectral response of the cell in the UV region, thanks to the conversion of the UV photons into NIR photons. The good electrical properties of the RE-doped SnOx layers have been highlighted as well. We believe that these conversion layers will provide a step ahead towards better solar cells performances. Electronic Thesis or Dissertation Text en http://www.theses.fr/2016STRAD011/document Bouras, Karima 2016-03-31 Strasbourg Slaoui, Abdelilah
collection NDLTD
language en
sources NDLTD
topic Oxydes
TCO
Terres rares
SnO2
Conversion de photons
Cellules solaires
CIGS
Si
Oxides
TCO
Rare earths
SnO2
Photons conversion
Solar cells
Si
CIGS
Sputtering
537.6
621.38
spellingShingle Oxydes
TCO
Terres rares
SnO2
Conversion de photons
Cellules solaires
CIGS
Si
Oxides
TCO
Rare earths
SnO2
Photons conversion
Solar cells
Si
CIGS
Sputtering
537.6
621.38
Bouras, Karima
Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells
description Ce travail a porté sur la synthèse et caractérisations structurales, optiques et électriques des films d’oxyde d'étain (SnOx) dopés avec des éléments de terres rares (RE: Néodyme, Praséodyme ou Ytterbium). L’objectif est de démontrer la conversion de photons UV voire Visible en photons rouges via ces films RE :SnOx, tout en conservant leurs propriétés d’oxydes transparents conducteurs. Les films ont été produits par des méthodes chimiques (sol-gel, précipitation) ou physiques (pulvérisation cathodique). Grâce à des analyses fines, nous avons pu corréler les propriétés structurales et de composition des couches RE :SnOx avec leurs propriétés d’émission de photons. Nous avons pu établir les conditions optimales de conversion photonique dans des systèmes à une seule ou double terre rare. Les mécanismes régissant le transfert dans ces films ont été avancés. Enfin, nous avons appliqué ces couches minces RE :SnOx optimisés sur des cellules solaires en silicium et en CIGS et nous avons montré une amélioration des paramètres photovoltaïques du dispositif ainsi qu’un net gain dans la réponse spectrale de la cellule dans l’UV. === Spectral conversion using lanthanide doped materials with excellent performances is a great challenging topic and of particular interest for photovoltaic. This work aims at functionalizing transparent conductive oxide materials with rare earth elements for photons conversion purpose without affecting transparency and transport properties of the TCO. The spectral conversion targeted in this thesis is of type “down”, in other words, we aim at converting high energy UV photons into low energy visible or NIR photons useful to solar cells. For this purpose we investigated the doping process of SnO2 as a host material with different rare earths such as Nd, Tb, Pr, and Yb. To understand the insertion process and the optical activation of the rare earth, RE-doped SnO2 nanoparticles (powders) have been synthesised by two chemical methods: co-precipitation and sol-gel. The results have shown an efficient insertion of the RE into the SnO2 structure with excellent emission properties. In view of application of RE-doped SnOx thin films to solar cells, studies concerning NIR emitting RE have been conducted (Nd, Yb, and co-doping with Yb and Nd) using sputtering. Several deposition parameters and post deposition treatments have been done in order to find the best chemical environment favourable to the RE emission. We have precisely identified the region of the UV light converted into NIR photons and proposed several energy transfer mechanisms occurring between the host SnOx and the REs. In case of co-doping, a second spectral conversion process has been identified; visible photons can be efficiently converted into NIR photons through energy transfer from Nd3+ to Yb3+ ions. Finally, application of these conversion layers to solar cells such as CIGS and Si based have shown an improvement of the cells characteristics, among others the Field factor, the cell efficiency and the increase of the spectral response of the cell in the UV region, thanks to the conversion of the UV photons into NIR photons. The good electrical properties of the RE-doped SnOx layers have been highlighted as well. We believe that these conversion layers will provide a step ahead towards better solar cells performances.
author2 Strasbourg
author_facet Strasbourg
Bouras, Karima
author Bouras, Karima
author_sort Bouras, Karima
title Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells
title_short Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells
title_full Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells
title_fullStr Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells
title_full_unstemmed Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells
title_sort re-doped sno2 oxides for efficient uv-vis to infrared photon conversion : application to solar cells
publishDate 2016
url http://www.theses.fr/2016STRAD011/document
work_keys_str_mv AT bouraskarima redopedsno2oxidesforefficientuvvistoinfraredphotonconversionapplicationtosolarcells
AT bouraskarima elaborationetcaracterisationdesoxydestransparentsconducteursdopesauxterresrarespourlaconversiondesphotonspourlephotovoltaique
_version_ 1718693031013515264