Summary: | L’infrarouge proche (1.5-2μm) ou SWIR (Short Wavelength Infrared) est une région particulièrement adaptée à la mesure de gaz à effet de serre par lidar à absorption différen- tielle (DIAL). En effet, (i) cet intervalle spectral contient des raies d’absorption intenses pour les principaux gaz à effet de serre (CO2, CH4, H2O, etc.) (ii) le taux d’extinction lors de la propagation du faisceau laser y est faible (iii) c’est une région spectrale dite en sécurité oculaire. Bien qu’abordée avec les moyens existants (détection hétérodyne), la mesure DIAL dans le SWIR a longtemps souffert de l’absence de photo-détecteurs ultra-sensibles. Les développements récents (années 2000) portant sur les photodiodes à avalanche (APD) HgCdTe ont changé la donne. En effet, ces dernières présentent de remarquables qualités d’amplification car elles allient trois propriétés fondamentales : un faible excès de bruit, un très faible courant d’obscurité et des gains importants. De telles propriétés sont essentielles pour les applications reposant sur la détection de très faibles signaux et en particulier le lidar.Dans cette thèse, nous analysons les performances d’un détecteur monopixel (200 μm) à base d’APD HgCdTe (conçu sur mesure par le CEA-LETI) dans le cadre de mesures expérimentales de la concentration de CO2 atmosphérique par lidar DIAL. L’émetteur laser est également un prototype, précédemment développé au Laboratoire de Météoro- logie Dynamique. Il produit alternativement des impulsions de 10 mJ à deux fréquences contrôlées dans la plage 2050-2054nm, le tout à une fréquence de répétition de 2kHz. Grâce à l’association de ces deux technologies de pointe nous avons pu effectuer les pre- mières mesures DIAL utilisant la technologie HgCdTe APD.Les expériences menées nous ont permis de confirmer le remarquable niveau de per- formances en sensibilité attendu (75 photons de bruit par temps caractéristique d’une bande passante de 20 MHz) et soulignent le potentiel futur d’un tel capteur pour toutes les applications faible flux dans le SWIR. Concernant les mesures DIAL, nous avons ob- tenu expérimentalement une précision relative de 10-20 % sur la concentration en CO2 pour une mesure dans la couche limite avec une résolution de 100 m - 4 s sur une portée de 1.5km. Par ailleurs, l’analyse fine de la réponse impulsionnelle de la photodiode à avalanche révèle une dégradation notable du long term settling time lorsqu’on la pola- rise. Ce phénomène contraint la plage d’utilisation du capteur, ce que nous discutons en tenant ce comportement du détecteur dans une simulation lidar. === The Short Wavelength Infrared (SWIR) region (1.5-2 μm) is well adapted for diffe- rential absorption lidar technique (DIAL) for several reasons : (i) it covers absorption bands with suitable intensity for the main greenhouse gases (CO2, CH4, H2O, etc.) (ii) the extinction due to particles is low (iii) it belongs to the eye safe domain. However, one main drawback has long been the lack of efficient photodetectors for such frequencies. A major enhancement occurred in the early 2000s when it was understood that HgCdTe avalanche photodiodes (APD) present close to unity excess noise factor on top of high gain and very low dark current. These features make this technology an almost ideal amplifier, especially useful for ultra low flux applications such as lidar.In this thesis, we analyze the performances of a custom large diameter (200μm) monopixel HgCdTe-APD based detector (designed at CEA-LETI) in the framework of atmospheric CO2 measurements with the DIAL technique. The laser emitter, a custom solid-state Ho :YLF laser developed at the Laboratoire de Météorologie Dynamique, is tunable in the 2050-2054nm range and produces 10 mJ pulses at a repetition rate of 2kHz. This emitter is associated to a detection chain adapted to the HgCdTe APD based detector to provide the first atmospheric DIAL measurements using the HgCdTe APD technology.Experiments confirmed the outstanding sensitivity of the detector (75 noise photons per characteristic time given a 20MHz bandwidth) and highlight the huge potential of this technology for any application relying on low light flux detection in SWIR. With the system previously mentioned, we reach an precision of 10-20 % on CO2 mixing ratio for a time-space resolution of 100 m and 4 s for measurements in the atmospheric boundary layer. Regarding the detector impulse response, we have shown evidence of a negative influence of reverse bias on the long term settling time of the APD. This phenomenon limits the dynamic range of useful signals and contraints the DIAL system. Thanks to numerical simulation taking into account this behaviour, we derive numerically expected biases on DIAL measurements.
|