Équations paraboliques non linéaires pour des problèmes d'hydrogéologie et de transition de phase

L'objet de cette thèse est d’étudier l'existence de solution pour une classe de systèmes d'évolution fortement couplés, ainsi que la limite singulière d'une équation aux dérivées partielles d'advection-réaction-diffusion.Au chapitre 1, nous d écrivons brièvement la dérivati...

Full description

Bibliographic Details
Main Author: Alkhayal, Jana
Other Authors: Université Paris-Saclay (ComUE)
Language:fr
en
Published: 2016
Subjects:
Online Access:http://www.theses.fr/2016SACLS448/document
Description
Summary:L'objet de cette thèse est d’étudier l'existence de solution pour une classe de systèmes d'évolution fortement couplés, ainsi que la limite singulière d'une équation aux dérivées partielles d'advection-réaction-diffusion.Au chapitre 1, nous d écrivons brièvement la dérivation d'un modèle d'intrusion saline pour des aquifères confinés et non confinés. Dans ce but nous nous appuyons sur la loi de Darcy et la loi de conservation de masse en négligeant l'effet de la dimension verticale.Au chapitre 2, nous considérons un système qui généralise le modèle d'intrusion saline dans des aquifères non confinés. C'est un système non linéaire parabolique dégénéré fortement couplé. Après avoir discrétisé en temps, gelé et tronqué des coefficients et finalement régularisé les équations, nous appliquons le théorème de Lax-Milgram pour prouver l'existence et l'unicité de la solution d'un problème linéaire associé. Nous appliquons ensuite un théorème du point fixe pour démontrer l'existence d'une solution du problème non linéaire approché. Nous obtenons de plus une estimation d'entropie, qui permet en particulier de démontrer la positivité de la solution. Finalement, nous passons à la limite dans le système et dans l'entropie pour prouver l'existence de solution pour le problème initial.Au chapitre 3, nous montrons l'existence de solution pour un système qui contient en particulier le modèle d'intrusion saline dans des aquifères confinés. Ce système est semblable au système du chapitre 2, mais la pression intervient comme inconnue supplémentaire. Il se rajoute la contrainte que la somme des hauteurs inconnues est une fonction donnée et la pression est en fait un multiplicateur de Lagrange associé à cette contrainte. Nous obtenons de nouveau une inégalité d'entropie et nous effectuons également une estimation sur le gradient de la pression.Au chapitre 4, nous nous intéressons à la description d'interfaces abruptes qui se déplacent selon un mouvement donné, par exemple le mouvement par courbure moyenne. Des singularités peuvent apparaître en temps fini ce qui explique la nécessité de définir une nouvelle notion de surface. Dans ce chapitre, on introduit la notion de "varifolds", ou surfaces généralisées, qui étendent la notion de "manifolds". A ces varifolds on associe une courbure moyenne généralisée ainsi qu'une vitesse normale généralisée.Au chapitre 5, nous considérons une équation d'advection-réaction-diffusion qui intervient dans un système de chimiotaxie-croissance proposé par Mimura et Tsujikawa. L'inconnue est la densité de population qui est soumise aux effets de diffusion et de croissance et qui a tendance à migrer vers des forts gradients de la substance chimiotactique. Quand un petit paramètre tend vers zéro, la solution converge vers une fonction étagée ; l'interface diffuse associée converge vers une interface abrupte qui se déplace selon un mouvement par courbure moyenne perturbé. Nous représentons ces interfaces par des varifolds définis à partir de la fonctionnelle de Lyapunov du problème d'Allen-Cahn. Nous établissons une formule de monotonie et nous montrons une propriété d'équipartition de l'énergie. Nous prouvons de plus que le varifold est rectifiable et que la fonction de multiplicité associée est presque partout entière. === The aim of this thesis is to study the existence of a solution for a class of evolution systems which are strongly coupled, as well as the singular limit of an advection-reaction-diffusion equation.In chapter 1, we describe briefly the derivation of a seawater intrusion model in confined and unconfined aquifers. For this purpose we combine Darcy's law with a mass conservation law and we neglect the effect of the vertical dimension.In chapter 2, we consider a system that generalizes the seawater intrusion model in unconfined aquifers. It is a strongly coupled nonlinear degenerate parabolic system. After discretizing in time, freezing and truncating the coefficients and finally regularizing the equations we apply Lax-Milgram theorem to prove the existence of a unique solution for the elliptic linear associated system. Then we apply a fixed point theorem to prove the existence of a solution for the nonlinear approximated problem. We obtain in addition an entropy estimate, which allows us in particular to prove the positivity of the solution. Finally, we pass to the limit in the system and the entropy in order to prove the existence of a solution for the initial problem.In chapter 3, we prove the existence of a solution for a system that contains in particular the seawater intrusion model in confined aquifers. This system is very similar to that introduced in chapter 2, only the pressure is a new unknown and we have the constraint that the sum of the unknown heights is a given function. The pressure is the Lagrange multiplier associated to the constraint. We obtain again an entropy estimate and we establish an estimate on the gradient of the pressure.In chapter 4, we are interested in the study of sharp interfaces that moves by a certain flow, by mean curvature flow for example. Singularities may occur in finite time which explains the necessity of having a differnet notion of surfaces. In this chapter, we introduce the notion of "varifolds" or generalized surfaces that extend the notion of manifolds. To these varifolds we associate a generalized mean curvature and a generalized normal velocity.In chapter 5, we consider an advection-reaction-diffusion equation arising from a chemotaxis-growth system proposed by Mimura and Tsujikawa. The unknown is the population density which is subjected to the effects of diffusion, of growth and to the tendency of migrating toward higher gradients of the chemotactic substance. When a small parameter tends to zero, the solution converges to a step function; the associated diffuse interface converges to a sharp interface which moves by perturbed mean curvature. We represent these interfaces by varifolds defined by the Lyapunov functional of the Allen-Cahn problem. We establish a monotonicity formula and we prove a property of equipartition of energy. We prove also the rectability of the varifold and that the multiplicity function is almost everywhere integer.