Uncertainties in Optimization

Ces recherches sont motivées par la nécessité de développer de nouvelles méthodes d'optimisation des systèmes électriques. Dans ce domaine, les méthodes usuelles de contrôle et d'investissement sont à présent limitées de par les problèmes comportant une grande part d'aléa, qui intervi...

Full description

Bibliographic Details
Main Author: Cauwet, Marie-Liesse
Other Authors: Université Paris-Saclay (ComUE)
Language:en
Published: 2016
Subjects:
Online Access:http://www.theses.fr/2016SACLS308/document
id ndltd-theses.fr-2016SACLS308
record_format oai_dc
spelling ndltd-theses.fr-2016SACLS3082020-02-03T15:27:03Z Uncertainties in Optimization Traitement de l'incertitude en optimisation Optimisation bruitée Apprentissage automatique Systèmes électriques Noizy Optimization Machine learning Power Systems Ces recherches sont motivées par la nécessité de développer de nouvelles méthodes d'optimisation des systèmes électriques. Dans ce domaine, les méthodes usuelles de contrôle et d'investissement sont à présent limitées de par les problèmes comportant une grande part d'aléa, qui interviennent lors de l'introduction massive d'énergies renouvelables. Après la présentation des différentes facettes de l'optimisation d'un système électrique, nous discuterons le problème d'optimisation continue bruitée de type boîte noire puis des cas bruités comprenant des caractéristiques supplémentaires.Concernant la contribution à l'optimisation continue bruitée de type boîte noire, nous nous intéresserons aux bornes inférieures et supérieures du taux de convergence de différentes familles d'algorithmes. Nous étudierons la convergence d'algorithmes basés sur les comparaisons, en particuliers les Stratégies d'Evolution, face à différents niveaux de bruit (faible, modéré et fort). Nous étendrons également les résultats de convergence des algorithmes basés sur les évaluations lors d'un bruit faible. Finalement, nous proposerons une méthode de sélection pour choisir le meilleur algorithme, parmi un éventail d'algorithme d'optimisation bruitée, sur un problème donné.Pour ce qui est de la contribution aux cas bruités avec des contraintes supplémentaires, les cas délicats, nous introduirons des concepts issus de l'apprentissage par renforcement, de la théorie de la décision et des statistiques. L'objectif est de proposer des méthodes d'optimisation plus proches de la réalité (en termes de modélisation) et plus robuste. Nous rechercherons également des critères de fiabilité des systèmes électriques moins conservatifs. This research is motivated by the need to find out new methods to optimize a power system. In this field, traditional management and investment methods are limited in front of highly stochastic problems which occur when introducing renewable energies at a large scale. After introducing the various facets of power system optimization, we discuss the continuous black-box noisy optimization problem and then some noisy cases with extra features.Regarding the contribution to continuous black-box noisy optimization, we are interested into finding lower and upper bounds on the rate of convergence of various families of algorithms. We study the convergence of comparison-based algorithms, including Evolution Strategies, in front of different strength of noise (small, moderate and big). We also extend the convergence results in the case of value-based algorithms when dealing with small noise. Last, we propose a selection tool to choose, between several noisy optimization algorithms, the best one on a given problem.For the contribution to noisy cases with additional constraints, the delicate cases, we introduce concepts from reinforcement learning, decision theory and statistic fields. We aim to propose optimization methods closer from the reality (in terms of modelling) and more robust. We also look for less conservative power system reliability criteria. Electronic Thesis or Dissertation Text Image StillImage en http://www.theses.fr/2016SACLS308/document Cauwet, Marie-Liesse 2016-09-30 Université Paris-Saclay (ComUE) Teytaud, Olivier Schoenauer, Marc
collection NDLTD
language en
sources NDLTD
topic Optimisation bruitée
Apprentissage automatique
Systèmes électriques
Noizy Optimization
Machine learning
Power Systems

spellingShingle Optimisation bruitée
Apprentissage automatique
Systèmes électriques
Noizy Optimization
Machine learning
Power Systems

Cauwet, Marie-Liesse
Uncertainties in Optimization
description Ces recherches sont motivées par la nécessité de développer de nouvelles méthodes d'optimisation des systèmes électriques. Dans ce domaine, les méthodes usuelles de contrôle et d'investissement sont à présent limitées de par les problèmes comportant une grande part d'aléa, qui interviennent lors de l'introduction massive d'énergies renouvelables. Après la présentation des différentes facettes de l'optimisation d'un système électrique, nous discuterons le problème d'optimisation continue bruitée de type boîte noire puis des cas bruités comprenant des caractéristiques supplémentaires.Concernant la contribution à l'optimisation continue bruitée de type boîte noire, nous nous intéresserons aux bornes inférieures et supérieures du taux de convergence de différentes familles d'algorithmes. Nous étudierons la convergence d'algorithmes basés sur les comparaisons, en particuliers les Stratégies d'Evolution, face à différents niveaux de bruit (faible, modéré et fort). Nous étendrons également les résultats de convergence des algorithmes basés sur les évaluations lors d'un bruit faible. Finalement, nous proposerons une méthode de sélection pour choisir le meilleur algorithme, parmi un éventail d'algorithme d'optimisation bruitée, sur un problème donné.Pour ce qui est de la contribution aux cas bruités avec des contraintes supplémentaires, les cas délicats, nous introduirons des concepts issus de l'apprentissage par renforcement, de la théorie de la décision et des statistiques. L'objectif est de proposer des méthodes d'optimisation plus proches de la réalité (en termes de modélisation) et plus robuste. Nous rechercherons également des critères de fiabilité des systèmes électriques moins conservatifs. === This research is motivated by the need to find out new methods to optimize a power system. In this field, traditional management and investment methods are limited in front of highly stochastic problems which occur when introducing renewable energies at a large scale. After introducing the various facets of power system optimization, we discuss the continuous black-box noisy optimization problem and then some noisy cases with extra features.Regarding the contribution to continuous black-box noisy optimization, we are interested into finding lower and upper bounds on the rate of convergence of various families of algorithms. We study the convergence of comparison-based algorithms, including Evolution Strategies, in front of different strength of noise (small, moderate and big). We also extend the convergence results in the case of value-based algorithms when dealing with small noise. Last, we propose a selection tool to choose, between several noisy optimization algorithms, the best one on a given problem.For the contribution to noisy cases with additional constraints, the delicate cases, we introduce concepts from reinforcement learning, decision theory and statistic fields. We aim to propose optimization methods closer from the reality (in terms of modelling) and more robust. We also look for less conservative power system reliability criteria.
author2 Université Paris-Saclay (ComUE)
author_facet Université Paris-Saclay (ComUE)
Cauwet, Marie-Liesse
author Cauwet, Marie-Liesse
author_sort Cauwet, Marie-Liesse
title Uncertainties in Optimization
title_short Uncertainties in Optimization
title_full Uncertainties in Optimization
title_fullStr Uncertainties in Optimization
title_full_unstemmed Uncertainties in Optimization
title_sort uncertainties in optimization
publishDate 2016
url http://www.theses.fr/2016SACLS308/document
work_keys_str_mv AT cauwetmarieliesse uncertaintiesinoptimization
AT cauwetmarieliesse traitementdelincertitudeenoptimisation
_version_ 1719311793745035264