Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité
L'optimisation difficile représente une classe de problèmes dont la résolution ne peut être obtenue par une méthode exacte en un temps polynomial.Trouver une solution en un temps raisonnable oblige à trouver un compromis quant à son exactitude.Les métaheuristiques sont une classe d'algorit...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2016
|
Subjects: | |
Online Access: | http://www.theses.fr/2016PESC1051/document |
id |
ndltd-theses.fr-2016PESC1051 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Optimisation Méta-Heuristique Colonie de fourmis artificielles Analyse de sensibilité Méthode de Morris Évolution différentielle Optimization Meta-Heuristic Artificial bee colony Sensitivity analysis Morris method Differential evolution |
spellingShingle |
Optimisation Méta-Heuristique Colonie de fourmis artificielles Analyse de sensibilité Méthode de Morris Évolution différentielle Optimization Meta-Heuristic Artificial bee colony Sensitivity analysis Morris method Differential evolution Loubiere, Peio Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
description |
L'optimisation difficile représente une classe de problèmes dont la résolution ne peut être obtenue par une méthode exacte en un temps polynomial.Trouver une solution en un temps raisonnable oblige à trouver un compromis quant à son exactitude.Les métaheuristiques sont une classe d'algorithmes permettant de résoudre de tels problèmes, de manière générique et efficiente (i.e. trouver une solution satisfaisante selon des critères définis: temps, erreur, etc.).Le premier chapitre de cette thèse est notamment consacré à la description de cette problématique et à l'étude détaillée de deux familles de métaheuristiques à population, les algorithmes évolutionnaires et les algorithmes d'intelligence en essaim.Afin de proposer une approche innovante dans le domaine des métaheuristiques, ce premier chapitre présente également la notion d'analyse de sensibilité.L'analyse de sensibilité permet d'évaluer l'influence des paramètres d'une fonction sur son résultat.Son étude caractérise globalement le comportement de la fonction à optimiser (linéarité, influence, corrélation, etc.) sur son espace de recherche.L'incorporation d'une méthode d'analyse de sensibilité au sein d'une métaheuristique permet d'orienter sa recherche le long des dimensions les plus prometteuses.Deux algorithmes réunissant ces notions sont proposés aux deuxième et troisième chapitres.Pour le premier algorithme, ABC-Morris, la méthode de Morris est introduite dans la métaheuristique de colonie d'abeilles artificielles (ABC).Cette inclusion est dédiée, les méthodes reposant sur deux équations similaires.Afin de généraliser l'approche, une nouvelle méthode, NN-LCC, est ensuite développée et son intégration générique est illustrée sur deux métaheuristiques, ABC avec taux de modification et évolution différentielle.L'efficacité des approches proposées est testée sur le jeu de données de la conférence CEC 2013. L'étude se réalise en deux parties: une analyse classique de la méthode vis-à-vis de plusieurs algorithmes de la littérature, puis vis-à-vis de l'algorithme d'origine en désactivant un ensemble de dimensions, provoquant une forte disparité des influences === Hard optimization stands for a class of problems which solutions cannot be found by an exact method, with a polynomial complexity.Finding the solution in an acceptable time requires compromises about its accuracy.Metaheuristics are high-level algorithms that solve these kind of problems. They are generic and efficient (i.e. they find an acceptable solution according to defined criteria such as time, error, etc.).The first chapter of this thesis is partially dedicated to the state-of-the-art of these issues, especially the study of two families of population based metaheuristics: evolutionnary algorithms and swarm intelligence based algorithms.In order to propose an innovative approach in metaheuristics research field, sensitivity analysis is presented in a second part of this chapter.Sensitivity analysis aims at evaluating arameters influence on a function response. Its study characterises globally a objective function behavior (linearity, non linearity, influence, etc.), over its search space.Including a sensitivity analysis method in a metaheuristic enhances its seach capabilities along most promising dimensions.Two algorithms, binding these two concepts, are proposed in second and third parts.In the first one, ABC-Morris, Morris method is included in artificial bee colony algorithm.This encapsulation is dedicated because of the similarity of their bare bone equations, With the aim of generalizing the approach, a new method is developped and its generic integration is illustrated on two metaheuristics.The efficiency of the two methods is tested on the CEC 2013 conference benchmark. The study contains two steps: an usual performance analysis of the method, on this benchmark, regarding several state-of-the-art algorithms and the comparison with its original version when influences are uneven deactivating a subset of dimensions |
author2 |
Paris Est |
author_facet |
Paris Est Loubiere, Peio |
author |
Loubiere, Peio |
author_sort |
Loubiere, Peio |
title |
Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
title_short |
Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
title_full |
Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
title_fullStr |
Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
title_full_unstemmed |
Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
title_sort |
amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité |
publishDate |
2016 |
url |
http://www.theses.fr/2016PESC1051/document |
work_keys_str_mv |
AT loubierepeio ameliorationdesmetaheuristiquesdoptimisationalaidedelanalysedesensibilite AT loubierepeio improvementofoptimizationmetaheuristicswithsensitivityanalysis |
_version_ |
1718503064252448768 |
spelling |
ndltd-theses.fr-2016PESC10512017-07-21T04:19:54Z Amélioration des métaheuristiques d'optimisation à l'aide de l'analyse de sensibilité Improvement of optimization metaheuristics with sensitivity analysis Optimisation Méta-Heuristique Colonie de fourmis artificielles Analyse de sensibilité Méthode de Morris Évolution différentielle Optimization Meta-Heuristic Artificial bee colony Sensitivity analysis Morris method Differential evolution L'optimisation difficile représente une classe de problèmes dont la résolution ne peut être obtenue par une méthode exacte en un temps polynomial.Trouver une solution en un temps raisonnable oblige à trouver un compromis quant à son exactitude.Les métaheuristiques sont une classe d'algorithmes permettant de résoudre de tels problèmes, de manière générique et efficiente (i.e. trouver une solution satisfaisante selon des critères définis: temps, erreur, etc.).Le premier chapitre de cette thèse est notamment consacré à la description de cette problématique et à l'étude détaillée de deux familles de métaheuristiques à population, les algorithmes évolutionnaires et les algorithmes d'intelligence en essaim.Afin de proposer une approche innovante dans le domaine des métaheuristiques, ce premier chapitre présente également la notion d'analyse de sensibilité.L'analyse de sensibilité permet d'évaluer l'influence des paramètres d'une fonction sur son résultat.Son étude caractérise globalement le comportement de la fonction à optimiser (linéarité, influence, corrélation, etc.) sur son espace de recherche.L'incorporation d'une méthode d'analyse de sensibilité au sein d'une métaheuristique permet d'orienter sa recherche le long des dimensions les plus prometteuses.Deux algorithmes réunissant ces notions sont proposés aux deuxième et troisième chapitres.Pour le premier algorithme, ABC-Morris, la méthode de Morris est introduite dans la métaheuristique de colonie d'abeilles artificielles (ABC).Cette inclusion est dédiée, les méthodes reposant sur deux équations similaires.Afin de généraliser l'approche, une nouvelle méthode, NN-LCC, est ensuite développée et son intégration générique est illustrée sur deux métaheuristiques, ABC avec taux de modification et évolution différentielle.L'efficacité des approches proposées est testée sur le jeu de données de la conférence CEC 2013. L'étude se réalise en deux parties: une analyse classique de la méthode vis-à-vis de plusieurs algorithmes de la littérature, puis vis-à-vis de l'algorithme d'origine en désactivant un ensemble de dimensions, provoquant une forte disparité des influences Hard optimization stands for a class of problems which solutions cannot be found by an exact method, with a polynomial complexity.Finding the solution in an acceptable time requires compromises about its accuracy.Metaheuristics are high-level algorithms that solve these kind of problems. They are generic and efficient (i.e. they find an acceptable solution according to defined criteria such as time, error, etc.).The first chapter of this thesis is partially dedicated to the state-of-the-art of these issues, especially the study of two families of population based metaheuristics: evolutionnary algorithms and swarm intelligence based algorithms.In order to propose an innovative approach in metaheuristics research field, sensitivity analysis is presented in a second part of this chapter.Sensitivity analysis aims at evaluating arameters influence on a function response. Its study characterises globally a objective function behavior (linearity, non linearity, influence, etc.), over its search space.Including a sensitivity analysis method in a metaheuristic enhances its seach capabilities along most promising dimensions.Two algorithms, binding these two concepts, are proposed in second and third parts.In the first one, ABC-Morris, Morris method is included in artificial bee colony algorithm.This encapsulation is dedicated because of the similarity of their bare bone equations, With the aim of generalizing the approach, a new method is developped and its generic integration is illustrated on two metaheuristics.The efficiency of the two methods is tested on the CEC 2013 conference benchmark. The study contains two steps: an usual performance analysis of the method, on this benchmark, regarding several state-of-the-art algorithms and the comparison with its original version when influences are uneven deactivating a subset of dimensions Electronic Thesis or Dissertation Text fr http://www.theses.fr/2016PESC1051/document Loubiere, Peio 2016-11-21 Paris Est Siarry, Patrick Chelouah, Rachid |