Tautological rings of moduli spaces of curves

Les espaces de modules de Riemann répondent au problème de la classification des surfaces de Riemann compactes d'un genre donné. Le sujet de cette thèse est la cohomologie de l'espace des modules des courbes d'un genre donné avec un certain nombre de points marqués. La description de...

Full description

Bibliographic Details
Main Author: Camara, Malick
Other Authors: Paris 6
Language:en
Published: 2016
Subjects:
510
Online Access:http://www.theses.fr/2016PA066459
id ndltd-theses.fr-2016PA066459
record_format oai_dc
spelling ndltd-theses.fr-2016PA0664592019-12-22T04:47:11Z Tautological rings of moduli spaces of curves Anneaux tautologiques d'espaces de modules de courbes Espaces de modules Anneau tautologique Relation tautologique Géométrie algébrique Surfaces de Riemann Courbe réelle Moduli space Tautological ring Tautological relation 510 Les espaces de modules de Riemann répondent au problème de la classification des surfaces de Riemann compactes d'un genre donné. Le sujet de cette thèse est la cohomologie de l'espace des modules des courbes d'un genre donné avec un certain nombre de points marqués. La description de cet anneau a été initiée par D. Mumford puis C. Faber avait proposé une description de l'anneau tautologique des espaces de modules sans points marqués. Une première source de relations provient des relations A. Pixton démontrées par A. Pixton, R. Pandharipande et D. Zvonkine mais on ne sait pas si elles sont complètes. Une autre source de relations utilisée dans ce travail sont les relations de A. Buryak, S. Shadrin et D. Zvonkine. Avant cette thèse, il y avait peu de résultats sur l'anneau tautologique d'espaces de modules de courbes avec un nombre quelconque de points marqués. Cette thèse donne une description complète des l'anneaux tautologiques des espaces de modules de courbes de genres 0, 1, 2, 3 et 4. Un des résultats ayant demandé beaucoup de travail est le groupe de degré 2 de l'anneau tautologique des espaces de modules de courbes lisses de genre 4. Ce groupe demande un travail sur l'annulation de certaines classes tautologiques sur le bord de la compactification de Deligne-Mumford de l'espace des modules en plus d'un astucieux travail numérique. L'espace des modules des courbes réelles de genre 0 et sa théorie de l'intersection sont également étudiés. On peut alors démontrer plusieurs résultats analogues à ceux obtenus dans le cas complexe comme l'équation de la corde. On démontre une formule donnant les nombres d'intersection. The problem of the moduli spaces of compact Riemann surfaces is the problem of the classification of compact Riemann surfaces of a certain genus. The topic of this thesis is the cohomology of the moduli spaces of curves of a certain genus with marked points and more precisely its subbring called tautological ring. The description of the tautological ring has been initiated by D. Mumford, then C. Faber conjectured a description of the moduli space of curves without marked points. A source of tautological relations are Pixton's relations proven by A. Pixton, R. Pabndharipande and D. Zvonkine. Another source of relations are relations of A. Buryak, S. Shadrin and D. Zvonkine. Before this thesis, there were only few results on the tautological ring of curves with any number of marked points. This thesis gives a complete description of the tautological rings of moduli curves of genera 0, 1, 2, 3 and 4 with any number of marked points. A result which needed a lot of work is the group of degree 2 of the tautological ring of the moudli space of smooth curves of genus 4. We need to work on the vanishing of some tautological classes on the boundary of the Deligne-Mumford compactification of the moduli space of curves and a clever numerical work.The moduli space of real curves of genus 0 and its intersection theory are also studied. Then we can show several results which are analogous to results in the complex case like the string equation. One result of this thesis is a formula giving intersection numbers of products of xi classes.x Electronic Thesis or Dissertation Text en http://www.theses.fr/2016PA066459 Camara, Malick 2016-09-30 Paris 6 Chiodo, Alessandro Zvonkine, Dimitri
collection NDLTD
language en
sources NDLTD
topic Espaces de modules
Anneau tautologique
Relation tautologique
Géométrie algébrique
Surfaces de Riemann
Courbe réelle
Moduli space
Tautological ring
Tautological relation
510
spellingShingle Espaces de modules
Anneau tautologique
Relation tautologique
Géométrie algébrique
Surfaces de Riemann
Courbe réelle
Moduli space
Tautological ring
Tautological relation
510
Camara, Malick
Tautological rings of moduli spaces of curves
description Les espaces de modules de Riemann répondent au problème de la classification des surfaces de Riemann compactes d'un genre donné. Le sujet de cette thèse est la cohomologie de l'espace des modules des courbes d'un genre donné avec un certain nombre de points marqués. La description de cet anneau a été initiée par D. Mumford puis C. Faber avait proposé une description de l'anneau tautologique des espaces de modules sans points marqués. Une première source de relations provient des relations A. Pixton démontrées par A. Pixton, R. Pandharipande et D. Zvonkine mais on ne sait pas si elles sont complètes. Une autre source de relations utilisée dans ce travail sont les relations de A. Buryak, S. Shadrin et D. Zvonkine. Avant cette thèse, il y avait peu de résultats sur l'anneau tautologique d'espaces de modules de courbes avec un nombre quelconque de points marqués. Cette thèse donne une description complète des l'anneaux tautologiques des espaces de modules de courbes de genres 0, 1, 2, 3 et 4. Un des résultats ayant demandé beaucoup de travail est le groupe de degré 2 de l'anneau tautologique des espaces de modules de courbes lisses de genre 4. Ce groupe demande un travail sur l'annulation de certaines classes tautologiques sur le bord de la compactification de Deligne-Mumford de l'espace des modules en plus d'un astucieux travail numérique. L'espace des modules des courbes réelles de genre 0 et sa théorie de l'intersection sont également étudiés. On peut alors démontrer plusieurs résultats analogues à ceux obtenus dans le cas complexe comme l'équation de la corde. On démontre une formule donnant les nombres d'intersection. === The problem of the moduli spaces of compact Riemann surfaces is the problem of the classification of compact Riemann surfaces of a certain genus. The topic of this thesis is the cohomology of the moduli spaces of curves of a certain genus with marked points and more precisely its subbring called tautological ring. The description of the tautological ring has been initiated by D. Mumford, then C. Faber conjectured a description of the moduli space of curves without marked points. A source of tautological relations are Pixton's relations proven by A. Pixton, R. Pabndharipande and D. Zvonkine. Another source of relations are relations of A. Buryak, S. Shadrin and D. Zvonkine. Before this thesis, there were only few results on the tautological ring of curves with any number of marked points. This thesis gives a complete description of the tautological rings of moduli curves of genera 0, 1, 2, 3 and 4 with any number of marked points. A result which needed a lot of work is the group of degree 2 of the tautological ring of the moudli space of smooth curves of genus 4. We need to work on the vanishing of some tautological classes on the boundary of the Deligne-Mumford compactification of the moduli space of curves and a clever numerical work.The moduli space of real curves of genus 0 and its intersection theory are also studied. Then we can show several results which are analogous to results in the complex case like the string equation. One result of this thesis is a formula giving intersection numbers of products of xi classes.x
author2 Paris 6
author_facet Paris 6
Camara, Malick
author Camara, Malick
author_sort Camara, Malick
title Tautological rings of moduli spaces of curves
title_short Tautological rings of moduli spaces of curves
title_full Tautological rings of moduli spaces of curves
title_fullStr Tautological rings of moduli spaces of curves
title_full_unstemmed Tautological rings of moduli spaces of curves
title_sort tautological rings of moduli spaces of curves
publishDate 2016
url http://www.theses.fr/2016PA066459
work_keys_str_mv AT camaramalick tautologicalringsofmodulispacesofcurves
AT camaramalick anneauxtautologiquesdespacesdemodulesdecourbes
_version_ 1719305992711176192