Études expérimentale et numérique des performances énergétiques d'une fenêtre pariétodynamique

L'utilisation massive des énergies fossiles est en grande partie responsable des émissions de gaz à effet de serre. De plus, la croissance de la demande énergétique et la raréfaction des ressources fossiles conduisent à l'accroissement du coût de l'énergie. La réponse à cette probléma...

Full description

Bibliographic Details
Main Author: Greffet, Rémy
Other Authors: La Rochelle
Language:fr
Published: 2016
Subjects:
Online Access:http://www.theses.fr/2016LAROS020/document
Description
Summary:L'utilisation massive des énergies fossiles est en grande partie responsable des émissions de gaz à effet de serre. De plus, la croissance de la demande énergétique et la raréfaction des ressources fossiles conduisent à l'accroissement du coût de l'énergie. La réponse à cette problématique passe par deux moyens d'action indissociables : la réduction des consommations énergétiques et le recours aux énergies renouvelables. La fenêtre pariétodynamique permet d’agir sur les deux postes principaux de déperdition thermique d’un bâtiment que sont les baies et la ventilation. Le principe de la fenêtre pariétodynamique étudiée est de faire circuler de l’air en convection forcée entre trois verres avant d’être restitué à l’ambiance intérieure du bâtiment. Cela permet à l’air de récupérer à la fois une partie des déperditions thermiques à travers la fenêtre et une partie de l’énergie solaire absorbée par les verres. Afin d’étudier le comportement thermo-aéraulique et les performances de la fenêtre, nous avons développé un modèle numérique de cette dernière. Un dispositif expérimental a été mis en place et utilisé afin de valider le modèle numérique et de comparer en conditions réelles les performances de la fenêtre étudiée à celles d’une fenêtre à double vitrage classique. Ces résultats expérimentaux ont été complétés par une étude paramétrique numérique réalisée pour différentes conditions climatiques et de fonctionnement. Les principaux enseignements issus de ces études expérimentales et numériques sont que le préchauffage de l’air se fait essentiellement dans la lame d’air intérieure, la température de la première lame d’air restant proche de celle de l’air extérieur. De plus, et contrairement aux températures de la face intérieure et de l’air soufflé, celle de la face externe de la fenêtre est peu impactée par les paramètres étudiés. Concernant le cadre de la fenêtre, nous avons observé que celui-ci bénéficie aussi des échanges thermiques avec l’air circulant, mais dans une moindre mesure. Cela contribue à rendre la fenêtre peu déperditive. Enfin, en couplant le modèle développé à un logiciel de simulation thermique dynamique, nous avons évalué le potentiel d’intégration de fenêtres pariétodynamiques dans une maison individuelle. Nous mettons ainsi en évidence que le besoin de chauffage est réduit d'environ 20 à 30 % par l’utilisation de fenêtres pariétodynamiques à la place de fenêtres à double vitrage classique. En été, si l’ambiance intérieure du bâtiment est plus fraîche que l’environnement extérieur, la fenêtre pré-rafraîchit l’air neuf entrant. === The massive use of fossil energies is largely responsible for greenhouse gas emissions. Moreover, the growth in energy demand and the depletion of fossil resources lead to an increase in energy costs. The response to this challenge requires two means of action which are linked : the reduction of energy consumption and the use of renewable energy. The airflow window acts on the two main ways of building heat losses that are windows and the ventilation. The principle of the studied airflow window is based on the circulation of fresh air, by forced convection, between the three glasses of the window before entering the building. This allows air to recover both a part of heat losses through the window and part of the solar energy absorbed by the glasses. To study the thermo-aeraulic behavior and thermal performances of the window, we have developed a numerical model of the studied airflow window. An experimental set up was used to validate the numerical model and compare, in real conditions, the studied window performances to the ones of a conventional double-glazed window. These experimental results were complemented by a numerical parametric study for different climatic and operating conditions.The main information from these experimental and numerical studies are that the preheating of the air takes place essentially in the inner air gap, temperature in the first air layer remaining close to the outdoor one. In addition, unlike the temperatures of the inside face and of the blown air, the outer face temperature of the window is not greatly affected by the studied parameters. On the window frame, we found that it also benefits of heat exchanges with the circulating air, but to a lesser extent. This makes the window energy efficient. Finally, by coupling the developed model to a thermal building simulation software, we evaluated the airflow windows integration potential in a house. We thus demonstrated that the heat load is reduced by about 20 to 30% by the use of airflow windows instead of conventional double-glazed windows. Moreover, in summer, when indoor is cooler than outdoor, we pointed out that the airflow window cools the incoming fresh air.