Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V

Les travaux présentés dans cette thèse s’inscrivent dans le contexte de l’identification de l’influence des paramètres de coupe et géométries d’outil sur l’usinabilité de l’alliage de titane Ti-6Al-4V sous deux états cristallographiques : alpha\beta et beta et s’insèrent dans le projet TiMaS, en par...

Full description

Bibliographic Details
Main Author: Barelli, Floran
Other Authors: Toulouse, INPT
Language:fr
Published: 2016
Subjects:
Online Access:http://www.theses.fr/2016INPT0011/document
id ndltd-theses.fr-2016INPT0011
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic TA6V
Efforts de coupe
Longueurs de contact
Microstructure
Usure
Contraintes résiduelles
TA6V
Cutting forces
Contact lengths
Microstructure
Wear
Residual stresses

spellingShingle TA6V
Efforts de coupe
Longueurs de contact
Microstructure
Usure
Contraintes résiduelles
TA6V
Cutting forces
Contact lengths
Microstructure
Wear
Residual stresses

Barelli, Floran
Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V
description Les travaux présentés dans cette thèse s’inscrivent dans le contexte de l’identification de l’influence des paramètres de coupe et géométries d’outil sur l’usinabilité de l’alliage de titane Ti-6Al-4V sous deux états cristallographiques : alpha\beta et beta et s’insèrent dans le projet TiMaS, en partenariat avec Airbus et Figeac Aéro. La première partie consiste donc en une identification des différents critères d’usinabilité considérés dans la bibliographie pour l’usinage des titanes et la modélisation des actions thermomécaniques régissant la coupe. Dans une deuxième partie, l’usinabilité des deux matériaux a été étudiée pour deux outils coupants, utilisés par les industriels, constituant ainsi nos deux couples outil matière. Aussi, suivant la démarche du Couple Outil-Matière (COM) un espace de fonctionnement des conditions de coupe a été défini pour les deux couples considérés, afin de déterminer les paramètres de coupe garantissant une amélioration de la productivité. Les efforts de coupe, ainsi que la durée de vie des outils ont de ce fait été sélectionnés comme critère d’usinabilité. Egalement, l’observation de la morphologie des copeaux et de leur état de déformation a permis de voir les singularités de comportement existantes entre les deux microstructures. Ces singularités ayant un impact sur la géométrie même du copeau et les actions thermomécaniques exercées par ce dernier sur les outils coupants, dans la troisième partie, des essais de coupe orthogonale (pour les deux matériaux) ont été effectués afin d’évaluer l’impact des géométries d’outil, des conditions de coupe et de la microstructure du matériau sur la thermomécanique de la coupe et les longueurs de contact entre la face de coupe des outils coupant et le copeau. La visualisation de l’écoulement du copeau par caméras rapides a permis de constater une certaine variabilité des longueurs de contact, influencée en partie par les paramètres de coupe et majoritairement par l’état cristallographique du matériau. L’analyse EDX des faces de coupe des outils coupant a montré que cette variabilité a une influence marquée sur l’usure en diffusion des plaquettes. Enfin, dans une dernière partie, un dernier critère d’usinabilité est étudié, reposant sur l’analyse des contraintes résiduelles générées par la coupe en surface de la pièce usinée. En se basant sur les essais de coupe orthogonale réalisés dans la partie précédente, une modélisation numérique basée sur un couplage thermomécanique faible a été développée afin de déterminer l’effet des conditions de coupe et des géométries d’outil sur les actions thermomécaniques et donc la génération de contraintes résiduelles, pour le cas du matériau à structure cristallographique bimodale. Les résultats de la modélisation ont ensuite étés comparés à des mesures de diffractométrie à rayons X effectués sur les pièces. === The work presented in this thesis aims to identify the influence of cutting conditions and tool geometries on Ti-6Al-4V alloy’s machinability under two microstructural states: alpha\beta and beta. This thesis takes part into the TiMaS project involving collaboration with Airbus and Figeac Aero. In a first part, we have identified machinability criteria usually considered for titanium alloys. Also, models describing thermomechanical actions occurring during cutting process are explored. In a second part, the two materials’ machinability has been studied for two cutting tools used by the industrials. Following the Tool Material Pair method, an operating space has been defined for the considered pairs. Then, cutting conditions leading to an increase of productivity have been obtained. Cutting forces as well as tool lives have been chosen has machinability criteria. Moreover, observations of chips and their states of deformation highlighted some behavior singularities between the two materials. These singularities have an impact on chip geometries and thermomechanical actions applied on cutting tools. Thus, in a third part, orthogonal cutting tests have been done in order to evaluate the effect of cutting conditions, tool geometries and microstructural state of the work material on thermomechanical actions of the cutting process and on tool chip contact lengths. Observations made on the chip flowing, with high speed cameras, have shown a variability of these contacts, mostly due to the microstructural state of the material. EDX measurements made on tools’ rake face allowed linking these variabilities to diffusion wear. In the last part, residual stresses induced by cutting process on the finished surface has been taken as the last machinability criterion for this study. Using orthogonal cutting test datas from the previous part, a numerical modeling using a low thermomechanical coupling has been carried out in order to understand cutting condition and geometry effects on residual stress generation. Modeling results have been confronted to residual stress measurements made with X-ray diffraction method on finished surface.
author2 Toulouse, INPT
author_facet Toulouse, INPT
Barelli, Floran
author Barelli, Floran
author_sort Barelli, Floran
title Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V
title_short Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V
title_full Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V
title_fullStr Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V
title_full_unstemmed Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V
title_sort développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane ta6v
publishDate 2016
url http://www.theses.fr/2016INPT0011/document
work_keys_str_mv AT barellifloran developpementdunemethodologiedoptimisationdesconditionsdusinageapplicationaufraisagedelalliagedetitaneta6v
AT barellifloran methodologydevelopmentformachiningconditionoptimizationapplicationtothemillingofta6vtitaniumalloy
_version_ 1718787548433612800
spelling ndltd-theses.fr-2016INPT00112018-10-27T04:32:45Z Développement d'une méthodologie d'optimisation des conditions d'usinage : application au fraisage de l'alliage de titane TA6V Methodology development for machining condition optimization : application to the milling of TA6V titanium alloy TA6V Efforts de coupe Longueurs de contact Microstructure Usure Contraintes résiduelles TA6V Cutting forces Contact lengths Microstructure Wear Residual stresses Les travaux présentés dans cette thèse s’inscrivent dans le contexte de l’identification de l’influence des paramètres de coupe et géométries d’outil sur l’usinabilité de l’alliage de titane Ti-6Al-4V sous deux états cristallographiques : alpha\beta et beta et s’insèrent dans le projet TiMaS, en partenariat avec Airbus et Figeac Aéro. La première partie consiste donc en une identification des différents critères d’usinabilité considérés dans la bibliographie pour l’usinage des titanes et la modélisation des actions thermomécaniques régissant la coupe. Dans une deuxième partie, l’usinabilité des deux matériaux a été étudiée pour deux outils coupants, utilisés par les industriels, constituant ainsi nos deux couples outil matière. Aussi, suivant la démarche du Couple Outil-Matière (COM) un espace de fonctionnement des conditions de coupe a été défini pour les deux couples considérés, afin de déterminer les paramètres de coupe garantissant une amélioration de la productivité. Les efforts de coupe, ainsi que la durée de vie des outils ont de ce fait été sélectionnés comme critère d’usinabilité. Egalement, l’observation de la morphologie des copeaux et de leur état de déformation a permis de voir les singularités de comportement existantes entre les deux microstructures. Ces singularités ayant un impact sur la géométrie même du copeau et les actions thermomécaniques exercées par ce dernier sur les outils coupants, dans la troisième partie, des essais de coupe orthogonale (pour les deux matériaux) ont été effectués afin d’évaluer l’impact des géométries d’outil, des conditions de coupe et de la microstructure du matériau sur la thermomécanique de la coupe et les longueurs de contact entre la face de coupe des outils coupant et le copeau. La visualisation de l’écoulement du copeau par caméras rapides a permis de constater une certaine variabilité des longueurs de contact, influencée en partie par les paramètres de coupe et majoritairement par l’état cristallographique du matériau. L’analyse EDX des faces de coupe des outils coupant a montré que cette variabilité a une influence marquée sur l’usure en diffusion des plaquettes. Enfin, dans une dernière partie, un dernier critère d’usinabilité est étudié, reposant sur l’analyse des contraintes résiduelles générées par la coupe en surface de la pièce usinée. En se basant sur les essais de coupe orthogonale réalisés dans la partie précédente, une modélisation numérique basée sur un couplage thermomécanique faible a été développée afin de déterminer l’effet des conditions de coupe et des géométries d’outil sur les actions thermomécaniques et donc la génération de contraintes résiduelles, pour le cas du matériau à structure cristallographique bimodale. Les résultats de la modélisation ont ensuite étés comparés à des mesures de diffractométrie à rayons X effectués sur les pièces. The work presented in this thesis aims to identify the influence of cutting conditions and tool geometries on Ti-6Al-4V alloy’s machinability under two microstructural states: alpha\beta and beta. This thesis takes part into the TiMaS project involving collaboration with Airbus and Figeac Aero. In a first part, we have identified machinability criteria usually considered for titanium alloys. Also, models describing thermomechanical actions occurring during cutting process are explored. In a second part, the two materials’ machinability has been studied for two cutting tools used by the industrials. Following the Tool Material Pair method, an operating space has been defined for the considered pairs. Then, cutting conditions leading to an increase of productivity have been obtained. Cutting forces as well as tool lives have been chosen has machinability criteria. Moreover, observations of chips and their states of deformation highlighted some behavior singularities between the two materials. These singularities have an impact on chip geometries and thermomechanical actions applied on cutting tools. Thus, in a third part, orthogonal cutting tests have been done in order to evaluate the effect of cutting conditions, tool geometries and microstructural state of the work material on thermomechanical actions of the cutting process and on tool chip contact lengths. Observations made on the chip flowing, with high speed cameras, have shown a variability of these contacts, mostly due to the microstructural state of the material. EDX measurements made on tools’ rake face allowed linking these variabilities to diffusion wear. In the last part, residual stresses induced by cutting process on the finished surface has been taken as the last machinability criterion for this study. Using orthogonal cutting test datas from the previous part, a numerical modeling using a low thermomechanical coupling has been carried out in order to understand cutting condition and geometry effects on residual stress generation. Modeling results have been confronted to residual stress measurements made with X-ray diffraction method on finished surface. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2016INPT0011/document Barelli, Floran 2016-02-16 Toulouse, INPT Dessein, Gilles Cahuc, Olivier