Summary: | La capacité de réaliser des tâches robotiques dextres à l'échelle nanométrique dans un microscope électronique à balayage (MEB) est un enjeu crucial pour les nanotechnologies. Les systèmes nano-robotiques dédiés à des applications sous MEB ont ainsi émergé dans de nombreux laboratoires de robotique. Ils peuvent être composés d'un ou de plusieurs actionneurs intégrés à des plateformes nano-robotiques avec un ou plusieurs effecteurs. L’actionneur Piézoélectrique Stick-Slip (PSS) est l'un des meilleurs candidats pour actionner les systèmes nano-robotiques dédiés à des applications sous MEB car il est capable d'effectuer un positionnement grossier avec une plage de déplacement millimétrique et un positionnement précis avec une plage de déplacement de quelques micromètres. La modélisation des actionneurs PSS est complexe notamment en raison de leur mode de fonctionnement hybride. La commande est également difficile à cause de plusieurs caractéristiques liées aux actionneurs PSS, soient le frottement, l’hystérésis et les vibrations non-amorties, qui dégradent leur performances en termes de précision et de vitesse. Ce travail porte sur la modélisation et la commande d'un système nano-robotique à 3 axes dédié à des applications sous MEB et actionné par des actionneurs piézoélectriques de type stick-slip. Chaque élément et caractéristique des actionneurs PSS ont été analysés et modélisés afin d’établir par la suite un modèle dynamique complet capable de décrire les deux modes de fonctionnement, à savoir le mode balayage et pas à pas. Pour chacun de ces deux modes, des lois de commande ont ainsi été développées pour les actionneurs PSS. Des stratégies de commande robuste ont été synthétisées pour des objectifs de positionnement rapide et à haute résolution en mode balayage. De telles performances sont fondamentales dans plusieurs tâches micro-/nano-robotique tels que le nano-assemblage rapide et précis et la nano-caractérisation des matériaux. Une commande proportionnelle en fréquence et en amplitude est synthétisée pour effectuer un déplacement millimétrique en mode pas à pas. Ceci est motivé par les applications robotiques pour lesquelles une large plage de déplacement est requise, tels que le scan de grandes surfaces et les phases d’approche d’une sonde d’un échantillon à manipuler. Une stratégie de commutation qui combine les modes balayage et pas à pas, est alors proposée pour remédier au manque de précision en mode pas à pas, lors de passage d’un grand à un petit déplacement. Ce travail a donné lieu à des résultats qui ouvrent de nouvelles perspectives pour l'utilisation des actionneurs PSS dans les systèmes nano-robotiques dédiés à des applications sous MEB. === The capability of doing dexterous robotic tasks at the nanometer scale inside a Scanning Electron Microscope (SEM) is a critical issue for nanotechnologies. SEM-integrated nano-robotic systems have consequently emerged in many robotics laboratories. They can be composed of one or more actuators assembled into nano-robotic platforms with one or several effectors. Piezoelectric Stick-Slip (PSS) actuators is one of the best candidate to actuate SEM-integrated nano-robotic systems because it is able to perform coarse positioning with millimeter displacement range and fine positioning with travel range of few micrometers. Modeling of PSS actuators is complex and difficult mainly because of their hybrid operating mode. Furthermore, control is challenging due to several characteristics related to PSS actuators, namely friction, hysteresis and undamped vibrations, which degrade their performance in terms of precision and speed. This work deals with modeling and control of a 3-axes SEM integrated nano-robotic system driven by piezoelectric stick-slip actuators. Each element and characteristic of PSS actuators are analyzed and modeled to thereafter establish a complete dynamic model able to describe the two functioning modes, namely the scanning and the stepping modes. PSS actuators are then controlled in each of these modes. Robust control strategies are developed to achieve high-resolution and fast positioning in scanning mode. Such performance is fundamental in several micro/nano-robotic tasks such as fast and accurate nano-assembly and nano-material characterization. A frequency/amplitude proportional controller is designed to perform millimeter displacement in stepping mode. This is motivated by robotic tasks where large motion is required, such as large surfaces scan and bringing a probe close to a sample to manipulate. A switched strategy, which combines scanning and stepping motion modes, is then proposed to remedy to the lack of precision in stepping motion, when passing from a large to a small displacement. This work has given rise to results which open new perspectives to the use of PSS actuators in SEM integrated nano-robotic systems.
|