Mathematical and algorithmic analysis of modified Langevin dynamics
En physique statistique, l’information macroscopique d’intérêt pour les systèmes considérés peut être dé-duite à partir de moyennes sur des configurations microscopiques réparties selon des mesures de probabilitéµ caractérisant l’état thermodynamique du système. En raison de la haute dimensionnalité...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2016
|
Subjects: | |
Online Access: | http://www.theses.fr/2016GREAM054/document |
id |
ndltd-theses.fr-2016GREAM054 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Dynamique moléculaire Discrétisation des équations différentielles stochastiques Réduction de la variance Méthodes de Monte-Carlo Algorithmique Molecular dynamics Discretization of stochastic differential equations Variance reduction Monte Carlo methods Algorithms 510 |
spellingShingle |
Dynamique moléculaire Discrétisation des équations différentielles stochastiques Réduction de la variance Méthodes de Monte-Carlo Algorithmique Molecular dynamics Discretization of stochastic differential equations Variance reduction Monte Carlo methods Algorithms 510 Trstanova, Zofia Mathematical and algorithmic analysis of modified Langevin dynamics |
description |
En physique statistique, l’information macroscopique d’intérêt pour les systèmes considérés peut être dé-duite à partir de moyennes sur des configurations microscopiques réparties selon des mesures de probabilitéµ caractérisant l’état thermodynamique du système. En raison de la haute dimensionnalité du système (quiest proportionnelle au nombre de particules), les configurations sont le plus souvent échantillonnées en util-isant des trajectoires d’équations différentielles stochastiques ou des chaînes de Markov ergodiques pourla mesure de Boltzmann-Gibbs µ, qui décrit un système à température constante. Un processus stochas-tique classique permettant d’échantillonner cette mesure est la dynamique de Langevin. En pratique, leséquations de la dynamique de Langevin ne peuvent pas être intégrées analytiquement, la solution est alorsapprochée par un schéma numérique. L’analyse numérique de ces schémas de discrétisation est maintenantbien maîtrisée pour l’énergie cinétique quadratique standard. Une limitation importante des estimateurs desmoyennes sontleurs éventuelles grandes erreurs statistiques.Sous certaines hypothèsessur lesénergies ciné-tique et potentielle, il peut être démontré qu’un théorème de limite central est vrai. La variance asymptotiquepeut être grande en raison de la métastabilité du processus de Langevin, qui se produit dès que la mesure deprobabilité µ est multimodale.Dans cette thèse, nous considérons la discrétisation de la dynamique de Langevin modifiée qui améliorel’échantillonnage de la distribution de Boltzmann-Gibbs en introduisant une fonction cinétique plus généraleà la place de la formulation quadratique standard. Nous avons en fait deux situations en tête : (a) La dy-namique de Langevin Adaptativement Restreinte, où l’énergie cinétique s’annule pour les faibles moments,et correspond à l’énergie cinétique standard pour les forts moments. L’intérêt de cette dynamique est que lesparticules avec une faible énergie sont restreintes. Le gain vient alors du fait que les interactions entre lesparticules restreintes ne doivent pas être mises à jour. En raison de la séparabilité des positions et des mo-ments marginaux de la distribution, les moyennes des observables qui dépendent de la variable de positionsont égales à celles calculées par la dynamique de Langevin standard. L’efficacité de cette méthode résidedans le compromis entre le gain de calcul et la variance asymptotique des moyennes ergodiques qui peutaugmenter par rapport à la dynamique standards car il existe a priori plus des corrélations dans le tempsen raison de particules restreintes. De plus, étant donné que l’énergie cinétique est nulle sur un ouvert, ladynamique de Langevin associé ne parvient pas à être hypoelliptique. La première tâche de cette thèse est deprouver que la dynamique de Langevin avec une telle énergie cinétique est ergodique. L’étape suivante con-siste à présenter une analyse mathématique de la variance asymptotique de la dynamique AR-Langevin. Afinde compléter l’analyse de ce procédé, on estime l’accélération algorithmique du coût d’une seule itération,en fonction des paramètres de la dynamique. (b) Nous considérons aussi la dynamique de Langevin avecdes énergies cinétiques dont la croissance est plus que quadratique à l’infini, dans une tentative de réduire lamétastabilité. La liberté supplémentaire fournie par le choix de l’énergie cinétique doit être utilisée afin deréduire la métastabilité de la dynamique. Dans cette thèse, nous explorons le choix de l’énergie cinétique etnous démontrons une convergence améliorée des moyennes ergodiques sur un exemple de faible dimension.Un des problèmes avec les situations que nous considérons est la stabilité des régimes discrétisés. Afind’obtenir une méthode de discrétisation faiblement cohérente d’ordre 2 (ce qui n’est plus trivial dans le casde l’énergie cinétique générale), nous nous reposons sur les schémas basés sur des méthodes de Metropolis. === In statistical physics, the macroscopic information of interest for the systems under consideration can beinferred from averages over microscopic configurations distributed according to probability measures µcharacterizing the thermodynamic state of the system. Due to the high dimensionality of the system (whichis proportional to the number of particles), these configurations are most often sampled using trajectories ofstochastic differential equations or Markov chains ergodic for the probability measure µ, which describesa system at constant temperature. One popular stochastic process allowing to sample this measure is theLangevin dynamics. In practice, the Langevin dynamics cannot be analytically integrated, its solution istherefore approximated with a numerical scheme. The numerical analysis of such discretization schemes isby now well-understood when the kinetic energy is the standard quadratic kinetic energy.One important limitation of the estimators of the ergodic averages are their possibly large statisticalerrors.Undercertainassumptionsonpotentialandkineticenergy,itcanbeshownthatacentrallimittheoremholds true. The asymptotic variance may be large due to the metastability of the Langevin process, whichoccurs as soon as the probability measure µ is multimodal.In this thesis, we consider the discretization of modified Langevin dynamics which improve the samplingof the Boltzmann–Gibbs distribution by introducing a more general kinetic energy function U instead of thestandard quadratic one. We have in fact two situations in mind:(a) Adaptively Restrained (AR) Langevin dynamics, where the kinetic energy vanishes for small momenta,while it agrees with the standard kinetic energy for large momenta. The interest of this dynamics isthat particles with low energy are restrained. The computational gain follows from the fact that theinteractions between restrained particles need not be updated. Due to the separability of the positionand momenta marginals of the distribution, the averages of observables which depend on the positionvariable are equal to the ones computed with the standard Langevin dynamics. The efficiency of thismethod lies in the trade-off between the computational gain and the asymptotic variance on ergodic av-erages which may increase compared to the standard dynamics since there are a priori more correlationsin time due to restrained particles. Moreover, since the kinetic energy vanishes on some open set, theassociated Langevin dynamics fails to be hypoelliptic. In fact, a first task of this thesis is to prove thatthe Langevin dynamics with such modified kinetic energy is ergodic. The next step is to present a math-ematical analysis of the asymptotic variance for the AR-Langevin dynamics. In order to complementthe analysis of this method, we estimate the algorithmic speed-up of the cost of a single iteration, as afunction of the parameters of the dynamics.(b) We also consider Langevin dynamics with kinetic energies growing more than quadratically at infinity,in an attempt to reduce metastability. The extra freedom provided by the choice of the kinetic energyshould be used in order to reduce the metastability of the dynamics. In this thesis, we explore thechoice of the kinetic energy and we demonstrate on a simple low-dimensional example an improvedconvergence of ergodic averages.An issue with the situations we consider is the stability of discretized schemes. In order to obtain aweakly consistent method of order 2 (which is no longer trivial for a general kinetic energy), we rely on therecently developped Metropolis schemes. |
author2 |
Grenoble Alpes |
author_facet |
Grenoble Alpes Trstanova, Zofia |
author |
Trstanova, Zofia |
author_sort |
Trstanova, Zofia |
title |
Mathematical and algorithmic analysis of modified Langevin dynamics |
title_short |
Mathematical and algorithmic analysis of modified Langevin dynamics |
title_full |
Mathematical and algorithmic analysis of modified Langevin dynamics |
title_fullStr |
Mathematical and algorithmic analysis of modified Langevin dynamics |
title_full_unstemmed |
Mathematical and algorithmic analysis of modified Langevin dynamics |
title_sort |
mathematical and algorithmic analysis of modified langevin dynamics |
publishDate |
2016 |
url |
http://www.theses.fr/2016GREAM054/document |
work_keys_str_mv |
AT trstanovazofia mathematicalandalgorithmicanalysisofmodifiedlangevindynamics AT trstanovazofia lanalysemathematiqueetalgorithmiquedeladynamiquedelangevinmodifie |
_version_ |
1718698796239552512 |
spelling |
ndltd-theses.fr-2016GREAM0542018-06-21T05:01:31Z Mathematical and algorithmic analysis of modified Langevin dynamics L'analyse mathématique et algorithmique de la dynamique de Langevin modifié Dynamique moléculaire Discrétisation des équations différentielles stochastiques Réduction de la variance Méthodes de Monte-Carlo Algorithmique Molecular dynamics Discretization of stochastic differential equations Variance reduction Monte Carlo methods Algorithms 510 En physique statistique, l’information macroscopique d’intérêt pour les systèmes considérés peut être dé-duite à partir de moyennes sur des configurations microscopiques réparties selon des mesures de probabilitéµ caractérisant l’état thermodynamique du système. En raison de la haute dimensionnalité du système (quiest proportionnelle au nombre de particules), les configurations sont le plus souvent échantillonnées en util-isant des trajectoires d’équations différentielles stochastiques ou des chaînes de Markov ergodiques pourla mesure de Boltzmann-Gibbs µ, qui décrit un système à température constante. Un processus stochas-tique classique permettant d’échantillonner cette mesure est la dynamique de Langevin. En pratique, leséquations de la dynamique de Langevin ne peuvent pas être intégrées analytiquement, la solution est alorsapprochée par un schéma numérique. L’analyse numérique de ces schémas de discrétisation est maintenantbien maîtrisée pour l’énergie cinétique quadratique standard. Une limitation importante des estimateurs desmoyennes sontleurs éventuelles grandes erreurs statistiques.Sous certaines hypothèsessur lesénergies ciné-tique et potentielle, il peut être démontré qu’un théorème de limite central est vrai. La variance asymptotiquepeut être grande en raison de la métastabilité du processus de Langevin, qui se produit dès que la mesure deprobabilité µ est multimodale.Dans cette thèse, nous considérons la discrétisation de la dynamique de Langevin modifiée qui améliorel’échantillonnage de la distribution de Boltzmann-Gibbs en introduisant une fonction cinétique plus généraleà la place de la formulation quadratique standard. Nous avons en fait deux situations en tête : (a) La dy-namique de Langevin Adaptativement Restreinte, où l’énergie cinétique s’annule pour les faibles moments,et correspond à l’énergie cinétique standard pour les forts moments. L’intérêt de cette dynamique est que lesparticules avec une faible énergie sont restreintes. Le gain vient alors du fait que les interactions entre lesparticules restreintes ne doivent pas être mises à jour. En raison de la séparabilité des positions et des mo-ments marginaux de la distribution, les moyennes des observables qui dépendent de la variable de positionsont égales à celles calculées par la dynamique de Langevin standard. L’efficacité de cette méthode résidedans le compromis entre le gain de calcul et la variance asymptotique des moyennes ergodiques qui peutaugmenter par rapport à la dynamique standards car il existe a priori plus des corrélations dans le tempsen raison de particules restreintes. De plus, étant donné que l’énergie cinétique est nulle sur un ouvert, ladynamique de Langevin associé ne parvient pas à être hypoelliptique. La première tâche de cette thèse est deprouver que la dynamique de Langevin avec une telle énergie cinétique est ergodique. L’étape suivante con-siste à présenter une analyse mathématique de la variance asymptotique de la dynamique AR-Langevin. Afinde compléter l’analyse de ce procédé, on estime l’accélération algorithmique du coût d’une seule itération,en fonction des paramètres de la dynamique. (b) Nous considérons aussi la dynamique de Langevin avecdes énergies cinétiques dont la croissance est plus que quadratique à l’infini, dans une tentative de réduire lamétastabilité. La liberté supplémentaire fournie par le choix de l’énergie cinétique doit être utilisée afin deréduire la métastabilité de la dynamique. Dans cette thèse, nous explorons le choix de l’énergie cinétique etnous démontrons une convergence améliorée des moyennes ergodiques sur un exemple de faible dimension.Un des problèmes avec les situations que nous considérons est la stabilité des régimes discrétisés. Afind’obtenir une méthode de discrétisation faiblement cohérente d’ordre 2 (ce qui n’est plus trivial dans le casde l’énergie cinétique générale), nous nous reposons sur les schémas basés sur des méthodes de Metropolis. In statistical physics, the macroscopic information of interest for the systems under consideration can beinferred from averages over microscopic configurations distributed according to probability measures µcharacterizing the thermodynamic state of the system. Due to the high dimensionality of the system (whichis proportional to the number of particles), these configurations are most often sampled using trajectories ofstochastic differential equations or Markov chains ergodic for the probability measure µ, which describesa system at constant temperature. One popular stochastic process allowing to sample this measure is theLangevin dynamics. In practice, the Langevin dynamics cannot be analytically integrated, its solution istherefore approximated with a numerical scheme. The numerical analysis of such discretization schemes isby now well-understood when the kinetic energy is the standard quadratic kinetic energy.One important limitation of the estimators of the ergodic averages are their possibly large statisticalerrors.Undercertainassumptionsonpotentialandkineticenergy,itcanbeshownthatacentrallimittheoremholds true. The asymptotic variance may be large due to the metastability of the Langevin process, whichoccurs as soon as the probability measure µ is multimodal.In this thesis, we consider the discretization of modified Langevin dynamics which improve the samplingof the Boltzmann–Gibbs distribution by introducing a more general kinetic energy function U instead of thestandard quadratic one. We have in fact two situations in mind:(a) Adaptively Restrained (AR) Langevin dynamics, where the kinetic energy vanishes for small momenta,while it agrees with the standard kinetic energy for large momenta. The interest of this dynamics isthat particles with low energy are restrained. The computational gain follows from the fact that theinteractions between restrained particles need not be updated. Due to the separability of the positionand momenta marginals of the distribution, the averages of observables which depend on the positionvariable are equal to the ones computed with the standard Langevin dynamics. The efficiency of thismethod lies in the trade-off between the computational gain and the asymptotic variance on ergodic av-erages which may increase compared to the standard dynamics since there are a priori more correlationsin time due to restrained particles. Moreover, since the kinetic energy vanishes on some open set, theassociated Langevin dynamics fails to be hypoelliptic. In fact, a first task of this thesis is to prove thatthe Langevin dynamics with such modified kinetic energy is ergodic. The next step is to present a math-ematical analysis of the asymptotic variance for the AR-Langevin dynamics. In order to complementthe analysis of this method, we estimate the algorithmic speed-up of the cost of a single iteration, as afunction of the parameters of the dynamics.(b) We also consider Langevin dynamics with kinetic energies growing more than quadratically at infinity,in an attempt to reduce metastability. The extra freedom provided by the choice of the kinetic energyshould be used in order to reduce the metastability of the dynamics. In this thesis, we explore thechoice of the kinetic energy and we demonstrate on a simple low-dimensional example an improvedconvergence of ergodic averages.An issue with the situations we consider is the stability of discretized schemes. In order to obtain aweakly consistent method of order 2 (which is no longer trivial for a general kinetic energy), we rely on therecently developped Metropolis schemes. Electronic Thesis or Dissertation Text en http://www.theses.fr/2016GREAM054/document Trstanova, Zofia 2016-11-25 Grenoble Alpes Redon, Stéphane Stoltz, Gabriel |