Mechanisms of plastic deformation of magnesium matrix nanocomposites
Le magnésium est le plus léger des métaux, ce qui lui confère un fort potentiel pour être utilisé dans des applications où l’allégement des structures est requis. Pour autant, sa résistance mécanique est très faible, et doit donc être augmentée afin de rivaliser avec d’autres métaux légers tels que...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2016
|
Subjects: | |
Online Access: | http://www.theses.fr/2016GREAI083/document |
id |
ndltd-theses.fr-2016GREAI083 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Magnésium Déformation plastique Nanocomposites Microcompression Maclage Magnesium Plastic deformation Nanocomposites Microcompression Twinning 620 |
spellingShingle |
Magnésium Déformation plastique Nanocomposites Microcompression Maclage Magnesium Plastic deformation Nanocomposites Microcompression Twinning 620 Mallmann, Camila Mechanisms of plastic deformation of magnesium matrix nanocomposites |
description |
Le magnésium est le plus léger des métaux, ce qui lui confère un fort potentiel pour être utilisé dans des applications où l’allégement des structures est requis. Pour autant, sa résistance mécanique est très faible, et doit donc être augmentée afin de rivaliser avec d’autres métaux légers tels que l’aluminium ou le titane. Une solution consiste à renforcer le magnésium et ses alliages en introduisant des nanoparticules d’oxydes. De par sa structure cristalline hexagonale compacte, le magnésium présente des propriétés plastiques complexes telles qu’une très forte anisotropie plastique et une prédisposition au maclage. La compréhension de ces mécanismes de déformation est essentielle pour le développement de nanocomposites plus performants en vue d’une utilisation industrielle plus répandue. Dans ce travail, nous nous sommes intéressés à l'élaboration et à la caractérisation de nanocomposites de magnésium pur renforcés par des particules d’oxydes. Différentes techniques ont été testées pour l’élaboration des nanocomposites : la solidification assistée aux ultrasons et le procédé de friction malaxage. L’homogénéité de la dispersion des particules a été vérifiée en 2D par observations en microscopie électronique et également en 3D par tomographie aux rayons X. On montre ainsi que le procédé de friction malaxage permet d'obtenir une distribution homogène des particules, tout en réduisant leur taille. Des essais de traction ont permis de mettre en évidence une augmentation de la limité d’élasticité pour une fraction volumique aussi faible que 0.3 %. Afin d’isoler le rôle des particules de celui des joints de grains sur le comportement plastique du nanocomposite, nous avons réalisé des essais de micro-compression sur des micro-piliers monocristallins usinés par canon à ions focalisés (FIB) dans des échantillons ayant préalablement subis un traitement thermique favorisant la croissance anormale des grains. Différentes orientations cristallines et tailles de micro-piliers ont été testées en vue d'étudier l’influence des particules d’une part sur la plasticité dans le plan basal par mouvement de dislocations et d’autre part sur la déformation par maclage. Contre toute attente, les essais sur monocristaux favorablement orientés pour un glissement basal ne montrent pas l’effet durcissant observé macroscopiquement. Nous attribuons cet effet à la densité initiale de dislocations mobiles, plus importante dans les nanocomposites que dans le magnésium pur, du fait des concentrations de contraintes autour des particules. Ces densités initiales de dislocations mobiles tendent également à supprimer l'effet de taille classiquement observé dans le magnésium pur. Les particules modifient également le mécanisme de déformation par maclage en favorisant l’apparition simultanée de plusieurs macles dans le micro-pilier qui interagissent entre elles au cours de la déformation alors que les micro-piliers de magnésium pur présentent généralement une macle unique (dans certains cas deux) qui envahi tout le monocristal. Ces résultats constituent une contribution originale à la compréhension du rôle des nanoparticules dans la déformation plastique des monocristaux de nanocomposites à base de magnésium. === Magnesium is the lightest of all structural metals, which gives it a huge potential to be used in applications that require lightweighting. However, its strength needs to be increased in order to compete with other light metals such as aluminum and titanium. A solution is the reinforcement of magnesium and its alloys with the addition of oxide nanoparticles. The hexagonal close packed crystalline structure is responsible for the complex plasticity of magnesium, which is characterized by a very strong plastic anisotropy as well as a complex twinning activity. Understanding these deformation mechanisms is crucial for the development of more performant nanocomposites, allowing widespread industrial application. The present work focuses on the processing and characterization of magnesium based nanocomposites reinforced with oxide particles. Two different processing techniques have been compared: friction stir processing and ultrasound assisted casting. The homogeneity of the dispersion of the reinforcement particles has been verified in 2 and 3 dimensions using electron microscopy and X-ray tomography, respectively. Friction stir processing produces nanocomposites with a more homogeneous dispersion of particles, while reducing their size. Tensile tests have shown strengthening of magnesium with the addition of a volume fraction of only 0.3 % of reinforcement. An annealing heat treatment has then been performed in order to promote abnormal grain growth and single crystalline microcolumns for microcompression testing have been machined by focused ion beam (FIB). The purpose is to isolate the role of particles. The orientation dependent mechanism of deformation and the size effects have been studied in order to understand the influence of the reinforcement particles on the plasticity for orientations favorable for basal slip or tensile twinning. Differently from the strengthening observed macroscopically, no clear strengthening effect is observed on microcolumns when dislocation glide operates. The reason is the higher density of potentially mobile dislocations that is generated due to stress concentrations around the reinforcement particles. In addition, the size effects usually observed on pure magnesium have also been suppressed with the addition of particles. The reinforcement particles seem to affect the twin nucleation stress and twin morphology: particles induce the nucleation of multiple twins inside a microcolumn, whereas in pure magnesium, only one or two twins have been observed. These results provide relevant insights on the role of nanoparticles on the onset of plastic deformation, as well as size effect, in single crystalline magnesium nanocomposites. |
author2 |
Grenoble Alpes |
author_facet |
Grenoble Alpes Mallmann, Camila |
author |
Mallmann, Camila |
author_sort |
Mallmann, Camila |
title |
Mechanisms of plastic deformation of magnesium matrix nanocomposites |
title_short |
Mechanisms of plastic deformation of magnesium matrix nanocomposites |
title_full |
Mechanisms of plastic deformation of magnesium matrix nanocomposites |
title_fullStr |
Mechanisms of plastic deformation of magnesium matrix nanocomposites |
title_full_unstemmed |
Mechanisms of plastic deformation of magnesium matrix nanocomposites |
title_sort |
mechanisms of plastic deformation of magnesium matrix nanocomposites |
publishDate |
2016 |
url |
http://www.theses.fr/2016GREAI083/document |
work_keys_str_mv |
AT mallmanncamila mechanismsofplasticdeformationofmagnesiummatrixnanocomposites AT mallmanncamila mecanismesdedeformationplastiquedesnanocompositesabasedemagnesium |
_version_ |
1718698779642691584 |
spelling |
ndltd-theses.fr-2016GREAI0832018-06-21T05:01:42Z Mechanisms of plastic deformation of magnesium matrix nanocomposites Mécanismes de déformation plastique des nanocomposites à base de magnésium Magnésium Déformation plastique Nanocomposites Microcompression Maclage Magnesium Plastic deformation Nanocomposites Microcompression Twinning 620 Le magnésium est le plus léger des métaux, ce qui lui confère un fort potentiel pour être utilisé dans des applications où l’allégement des structures est requis. Pour autant, sa résistance mécanique est très faible, et doit donc être augmentée afin de rivaliser avec d’autres métaux légers tels que l’aluminium ou le titane. Une solution consiste à renforcer le magnésium et ses alliages en introduisant des nanoparticules d’oxydes. De par sa structure cristalline hexagonale compacte, le magnésium présente des propriétés plastiques complexes telles qu’une très forte anisotropie plastique et une prédisposition au maclage. La compréhension de ces mécanismes de déformation est essentielle pour le développement de nanocomposites plus performants en vue d’une utilisation industrielle plus répandue. Dans ce travail, nous nous sommes intéressés à l'élaboration et à la caractérisation de nanocomposites de magnésium pur renforcés par des particules d’oxydes. Différentes techniques ont été testées pour l’élaboration des nanocomposites : la solidification assistée aux ultrasons et le procédé de friction malaxage. L’homogénéité de la dispersion des particules a été vérifiée en 2D par observations en microscopie électronique et également en 3D par tomographie aux rayons X. On montre ainsi que le procédé de friction malaxage permet d'obtenir une distribution homogène des particules, tout en réduisant leur taille. Des essais de traction ont permis de mettre en évidence une augmentation de la limité d’élasticité pour une fraction volumique aussi faible que 0.3 %. Afin d’isoler le rôle des particules de celui des joints de grains sur le comportement plastique du nanocomposite, nous avons réalisé des essais de micro-compression sur des micro-piliers monocristallins usinés par canon à ions focalisés (FIB) dans des échantillons ayant préalablement subis un traitement thermique favorisant la croissance anormale des grains. Différentes orientations cristallines et tailles de micro-piliers ont été testées en vue d'étudier l’influence des particules d’une part sur la plasticité dans le plan basal par mouvement de dislocations et d’autre part sur la déformation par maclage. Contre toute attente, les essais sur monocristaux favorablement orientés pour un glissement basal ne montrent pas l’effet durcissant observé macroscopiquement. Nous attribuons cet effet à la densité initiale de dislocations mobiles, plus importante dans les nanocomposites que dans le magnésium pur, du fait des concentrations de contraintes autour des particules. Ces densités initiales de dislocations mobiles tendent également à supprimer l'effet de taille classiquement observé dans le magnésium pur. Les particules modifient également le mécanisme de déformation par maclage en favorisant l’apparition simultanée de plusieurs macles dans le micro-pilier qui interagissent entre elles au cours de la déformation alors que les micro-piliers de magnésium pur présentent généralement une macle unique (dans certains cas deux) qui envahi tout le monocristal. Ces résultats constituent une contribution originale à la compréhension du rôle des nanoparticules dans la déformation plastique des monocristaux de nanocomposites à base de magnésium. Magnesium is the lightest of all structural metals, which gives it a huge potential to be used in applications that require lightweighting. However, its strength needs to be increased in order to compete with other light metals such as aluminum and titanium. A solution is the reinforcement of magnesium and its alloys with the addition of oxide nanoparticles. The hexagonal close packed crystalline structure is responsible for the complex plasticity of magnesium, which is characterized by a very strong plastic anisotropy as well as a complex twinning activity. Understanding these deformation mechanisms is crucial for the development of more performant nanocomposites, allowing widespread industrial application. The present work focuses on the processing and characterization of magnesium based nanocomposites reinforced with oxide particles. Two different processing techniques have been compared: friction stir processing and ultrasound assisted casting. The homogeneity of the dispersion of the reinforcement particles has been verified in 2 and 3 dimensions using electron microscopy and X-ray tomography, respectively. Friction stir processing produces nanocomposites with a more homogeneous dispersion of particles, while reducing their size. Tensile tests have shown strengthening of magnesium with the addition of a volume fraction of only 0.3 % of reinforcement. An annealing heat treatment has then been performed in order to promote abnormal grain growth and single crystalline microcolumns for microcompression testing have been machined by focused ion beam (FIB). The purpose is to isolate the role of particles. The orientation dependent mechanism of deformation and the size effects have been studied in order to understand the influence of the reinforcement particles on the plasticity for orientations favorable for basal slip or tensile twinning. Differently from the strengthening observed macroscopically, no clear strengthening effect is observed on microcolumns when dislocation glide operates. The reason is the higher density of potentially mobile dislocations that is generated due to stress concentrations around the reinforcement particles. In addition, the size effects usually observed on pure magnesium have also been suppressed with the addition of particles. The reinforcement particles seem to affect the twin nucleation stress and twin morphology: particles induce the nucleation of multiple twins inside a microcolumn, whereas in pure magnesium, only one or two twins have been observed. These results provide relevant insights on the role of nanoparticles on the onset of plastic deformation, as well as size effect, in single crystalline magnesium nanocomposites. Electronic Thesis or Dissertation Text en http://www.theses.fr/2016GREAI083/document Mallmann, Camila 2016-11-18 Grenoble Alpes Fivel, Marc |