Clonage réaliste de visage.

Les clones de visage 3D peuvent être utilisés dans de nombreux domaines tels que l'interaction homme-machine et comme prétraitement dans des applications telles que l'analyse de l'émotion. Toutefois, ces clones doivent avoir la forme du visage bien modélisée tout en conservant les spé...

Full description

Bibliographic Details
Main Author: Manceau, Jérôme
Other Authors: CentraleSupélec
Language:fr
en
Published: 2016
Subjects:
Online Access:http://www.theses.fr/2016CSUP0004/document
id ndltd-theses.fr-2016CSUP0004
record_format oai_dc
spelling ndltd-theses.fr-2016CSUP00042019-07-13T03:30:09Z Clonage réaliste de visage. Realistic face clone Maillage sémantique Clone de visage Patchs de profondeur Détection de patchs Fusion de patchs Semantic mesh Facial clone Depth patches Patches detection Patches fusion Les clones de visage 3D peuvent être utilisés dans de nombreux domaines tels que l'interaction homme-machine et comme prétraitement dans des applications telles que l'analyse de l'émotion. Toutefois, ces clones doivent avoir la forme du visage bien modélisée tout en conservant les spécificités des individus et ils doivent être sémantiques. Un clone est sémantique quand on connaît la position des différentes parties du visage (yeux, nez ...). Dans notre technique, nous utilisons un capteur RVB-Z pour obtenir les spécificités des individus et un modèle déformable de visage 3D pour marquer la forme du visage. Pour la reconstruction de la forme, nous inversons le processus utilisé classiquement. En effet, nous réalisons d'abord le fitting puis la fusion de données. Pour chaque trame de profondeur, nous gardons les parties appropriées de données appelées patchs de forme. Selon le positionnement de ces patchs, nous fusionnons les données du capteur ou les données du modèle déformable de visage 3D. Pour la reconstruction de la texture, nous utilisons des patchs de forme et de texture pour préserver les caractéristiques de la personne. Ils sont détectés à partir des cartes de profondeur du capteur. Les tests que nous avons effectués montrent la robustesse et la précision de notre méthode. 3D face clones can be used in many areas such as Human-Computer Interaction and as pretreatment in applications such as emotion analysis. However, such clones should have well-modeled facial shape while keeping the specificities of individuals and they should be semantic. A clone is semantic when we know the position of the different parts of the face (eyes, nose...). In our technique, we use a RGB-D sensor to get the specificities of individuals and 3D Morphable Face Model to mark facial shape. For the reconstruction of the shape, we reverse the process classically used. Indeed, we first perform fitting and then data fusion. For each depth frame, we keep the suitable parts of data called patches. Depending on the location, we merge either sensor data or 3D Morphable Face Model data. For the reconstruction of the texture, we use shape and texture patches to preserve the person's characteristics. They are detected using the depth frames of a RGB-D sensor. The tests we perform show the robustness and the accuracy of our method. Electronic Thesis or Dissertation Text fr en http://www.theses.fr/2016CSUP0004/document Manceau, Jérôme 2016-05-04 CentraleSupélec Séguier, Renaud Soladié, Catherine
collection NDLTD
language fr
en
sources NDLTD
topic Maillage sémantique
Clone de visage
Patchs de profondeur
Détection de patchs
Fusion de patchs
Semantic mesh
Facial clone
Depth patches
Patches detection
Patches fusion

spellingShingle Maillage sémantique
Clone de visage
Patchs de profondeur
Détection de patchs
Fusion de patchs
Semantic mesh
Facial clone
Depth patches
Patches detection
Patches fusion

Manceau, Jérôme
Clonage réaliste de visage.
description Les clones de visage 3D peuvent être utilisés dans de nombreux domaines tels que l'interaction homme-machine et comme prétraitement dans des applications telles que l'analyse de l'émotion. Toutefois, ces clones doivent avoir la forme du visage bien modélisée tout en conservant les spécificités des individus et ils doivent être sémantiques. Un clone est sémantique quand on connaît la position des différentes parties du visage (yeux, nez ...). Dans notre technique, nous utilisons un capteur RVB-Z pour obtenir les spécificités des individus et un modèle déformable de visage 3D pour marquer la forme du visage. Pour la reconstruction de la forme, nous inversons le processus utilisé classiquement. En effet, nous réalisons d'abord le fitting puis la fusion de données. Pour chaque trame de profondeur, nous gardons les parties appropriées de données appelées patchs de forme. Selon le positionnement de ces patchs, nous fusionnons les données du capteur ou les données du modèle déformable de visage 3D. Pour la reconstruction de la texture, nous utilisons des patchs de forme et de texture pour préserver les caractéristiques de la personne. Ils sont détectés à partir des cartes de profondeur du capteur. Les tests que nous avons effectués montrent la robustesse et la précision de notre méthode. === 3D face clones can be used in many areas such as Human-Computer Interaction and as pretreatment in applications such as emotion analysis. However, such clones should have well-modeled facial shape while keeping the specificities of individuals and they should be semantic. A clone is semantic when we know the position of the different parts of the face (eyes, nose...). In our technique, we use a RGB-D sensor to get the specificities of individuals and 3D Morphable Face Model to mark facial shape. For the reconstruction of the shape, we reverse the process classically used. Indeed, we first perform fitting and then data fusion. For each depth frame, we keep the suitable parts of data called patches. Depending on the location, we merge either sensor data or 3D Morphable Face Model data. For the reconstruction of the texture, we use shape and texture patches to preserve the person's characteristics. They are detected using the depth frames of a RGB-D sensor. The tests we perform show the robustness and the accuracy of our method.
author2 CentraleSupélec
author_facet CentraleSupélec
Manceau, Jérôme
author Manceau, Jérôme
author_sort Manceau, Jérôme
title Clonage réaliste de visage.
title_short Clonage réaliste de visage.
title_full Clonage réaliste de visage.
title_fullStr Clonage réaliste de visage.
title_full_unstemmed Clonage réaliste de visage.
title_sort clonage réaliste de visage.
publishDate 2016
url http://www.theses.fr/2016CSUP0004/document
work_keys_str_mv AT manceaujerome clonagerealistedevisage
AT manceaujerome realisticfaceclone
_version_ 1719223613835444224