The CM class number one problem for curves
Soit E une courbe elliptique sur C ayant multiplication complexe (CM) par l’ordre maximal OK d’un corps quadratique imaginaire K. Le premier théorème principal de la multiplication complexe affirme que le corps K(j(E)), obtenu en adjoignant à K le j-invariant de E, est égal au corps de classes de Hi...
Main Author: | Kilicer, Pinar |
---|---|
Other Authors: | Bordeaux |
Language: | en |
Published: |
2016
|
Subjects: | |
Online Access: | http://www.theses.fr/2016BORD0046/document |
Similar Items
-
Surfaces abéliennes à multiplication quaternionique et points rationnels de quotients d'Atkin-Lehner de courbes de Shimura
by: Gillibert, Florence
Published: (2011) -
Moduli of CM False Elliptic Curves
by: Phillips, Andrew
Published: (2015) -
On the 16-rank of class groups of quadratic number fields
by: Milovic, Djordjo
Published: (2016) -
Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves
by: Angelakis, Athanasios
Published: (2015) -
Semi-simplicity of l-adic representations with applications to Shimura varieties
by: Fayad, Karam
Published: (2015)