Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome

Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabo...

Full description

Bibliographic Details
Main Author: Treps, Lucas
Other Authors: Sorbonne Paris Cité
Language:fr
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015USPCT018/document
id ndltd-theses.fr-2015USPCT018
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Jonctions endothéliales
VE-cadhérine
Vaisseaux cérébraux
Barrière hémato-encéphalique
Perméabilité vasculaire
Glioblastome
Cellules cancéreuses à caractère souche
Cellules souches gliomateuses
Sémaphorine 3A
Vésicules extracellulaires
Microvésicules
Exosomes
Endothelial junctions
VE-cadherin
Brain vessels
Blood brain barrier
Vascular permeability
Glioblastoma
Cancer stem-like cells
Glioblastoma stem-like cells
Semaphorin 3A
Extracellular vesicles
Microvesicles
Exosomes
571.6
spellingShingle Jonctions endothéliales
VE-cadhérine
Vaisseaux cérébraux
Barrière hémato-encéphalique
Perméabilité vasculaire
Glioblastome
Cellules cancéreuses à caractère souche
Cellules souches gliomateuses
Sémaphorine 3A
Vésicules extracellulaires
Microvésicules
Exosomes
Endothelial junctions
VE-cadherin
Brain vessels
Blood brain barrier
Vascular permeability
Glioblastoma
Cancer stem-like cells
Glioblastoma stem-like cells
Semaphorin 3A
Extracellular vesicles
Microvesicles
Exosomes
571.6
Treps, Lucas
Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
description Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. === Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.
author2 Sorbonne Paris Cité
author_facet Sorbonne Paris Cité
Treps, Lucas
author Treps, Lucas
author_sort Treps, Lucas
title Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
title_short Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
title_full Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
title_fullStr Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
title_full_unstemmed Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
title_sort implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome
publishDate 2015
url http://www.theses.fr/2015USPCT018/document
work_keys_str_mv AT trepslucas implicationdesvesiculesextracellulairesdescellulesinitiatricestumoralesdanslaugmentationdelapermeabilitevasculaireduglioblastome
AT trepslucas theimplicationofcancerstemlikecellderivedextracellularvesicleinglioblastomavascularpermeabilityincrease
_version_ 1718406785861156864
spelling ndltd-theses.fr-2015USPCT0182017-01-05T04:01:35Z Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase Jonctions endothéliales VE-cadhérine Vaisseaux cérébraux Barrière hémato-encéphalique Perméabilité vasculaire Glioblastome Cellules cancéreuses à caractère souche Cellules souches gliomateuses Sémaphorine 3A Vésicules extracellulaires Microvésicules Exosomes Endothelial junctions VE-cadherin Brain vessels Blood brain barrier Vascular permeability Glioblastoma Cancer stem-like cells Glioblastoma stem-like cells Semaphorin 3A Extracellular vesicles Microvesicles Exosomes 571.6 Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome. Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2015USPCT018/document Treps, Lucas 2015-09-02 Sorbonne Paris Cité Gavard, Julie