Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses

Nous montrons la validité du formalisme multifractal pour les mesures aléatoires faiblement Gibbs portées par l’ attracteur associé à une dynamique aléatoire C¹ codée par un sous-shift de type fini aléatoire, et expansive en moyenne. Nous établissons également des loi de type 0-∞ pour les mesures de...

Full description

Bibliographic Details
Main Author: Yuan, Zhihui
Other Authors: Sorbonne Paris Cité
Language:fr
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015USPCD098/document
id ndltd-theses.fr-2015USPCD098
record_format oai_dc
spelling ndltd-theses.fr-2015USPCD0982019-06-02T03:30:19Z Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses Multifractal analysis of random weak Gibbs measures and their inverse Théorie métrique de l’approximation Mesures inverses Metric approximation theory Inverse measures Nous montrons la validité du formalisme multifractal pour les mesures aléatoires faiblement Gibbs portées par l’ attracteur associé à une dynamique aléatoire C¹ codée par un sous-shift de type fini aléatoire, et expansive en moyenne. Nous établissons également des loi de type 0-∞ pour les mesures de Hausdorff et de packing généralisées des ensembles de niveau de la dimension locale, et calculons les dimensions de Hausdorff et de packing des ensembles de points en lesquels la dimension inférieure locale et la dimension supérieure locale sont prescrites. Lorsque l’attracteur est un ensemble de Cantor de mesure de Lebesgue nulle, nous montrons la validité du formalisme multifractal pour les mesures discrètes obtenues comme inverses de ces mesures faiblement Gibbs. We establish the validity of the multifractal formalism for random weak Gibbs measures supported on the attractor associated with a C¹ random dynamics coded by a random subshift of finite type, and expanding in the mean. We also prove a 0-∞ law for the generalized Hausdorff and packing measures of the level sets of the local dimension, and we compute the Hausdorff and packing dimensions of the sets of points at which the lower and upper local dimensions are prescribed. In the case that the attractor is a Cantor set of zero Lebesgue measure, we prove the validity of the multifractal formalism for the discrete measures obtained as inverse of these weak Gibbs measures. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2015USPCD098/document Yuan, Zhihui 2015-12-17 Sorbonne Paris Cité Barral, Julien
collection NDLTD
language fr
sources NDLTD
topic Théorie métrique de l’approximation
Mesures inverses
Metric approximation theory
Inverse measures

spellingShingle Théorie métrique de l’approximation
Mesures inverses
Metric approximation theory
Inverse measures

Yuan, Zhihui
Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses
description Nous montrons la validité du formalisme multifractal pour les mesures aléatoires faiblement Gibbs portées par l’ attracteur associé à une dynamique aléatoire C¹ codée par un sous-shift de type fini aléatoire, et expansive en moyenne. Nous établissons également des loi de type 0-∞ pour les mesures de Hausdorff et de packing généralisées des ensembles de niveau de la dimension locale, et calculons les dimensions de Hausdorff et de packing des ensembles de points en lesquels la dimension inférieure locale et la dimension supérieure locale sont prescrites. Lorsque l’attracteur est un ensemble de Cantor de mesure de Lebesgue nulle, nous montrons la validité du formalisme multifractal pour les mesures discrètes obtenues comme inverses de ces mesures faiblement Gibbs. === We establish the validity of the multifractal formalism for random weak Gibbs measures supported on the attractor associated with a C¹ random dynamics coded by a random subshift of finite type, and expanding in the mean. We also prove a 0-∞ law for the generalized Hausdorff and packing measures of the level sets of the local dimension, and we compute the Hausdorff and packing dimensions of the sets of points at which the lower and upper local dimensions are prescribed. In the case that the attractor is a Cantor set of zero Lebesgue measure, we prove the validity of the multifractal formalism for the discrete measures obtained as inverse of these weak Gibbs measures.
author2 Sorbonne Paris Cité
author_facet Sorbonne Paris Cité
Yuan, Zhihui
author Yuan, Zhihui
author_sort Yuan, Zhihui
title Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses
title_short Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses
title_full Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses
title_fullStr Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses
title_full_unstemmed Analyse multifractale de mesures faiblement Gibbs aléatoires et de leurs inverses
title_sort analyse multifractale de mesures faiblement gibbs aléatoires et de leurs inverses
publishDate 2015
url http://www.theses.fr/2015USPCD098/document
work_keys_str_mv AT yuanzhihui analysemultifractaledemesuresfaiblementgibbsaleatoiresetdeleursinverses
AT yuanzhihui multifractalanalysisofrandomweakgibbsmeasuresandtheirinverse
_version_ 1719197681510776832