Comment deux lignées cellulaires stromales mésenchymateuses humaines récapitulent in vitro le microenvironnement hématopoïétique ? : Intérêt en ingénierie

L’hématopoïèse se déroule dans un microenvironnement spécialisé appelé niche où les cellules souches hématopoïétiques (CSH) sont en contact étroit avec les cellules stromales mésenchymateuses. Cette interaction cellulaire associée à d’autres facteurs environnementaux, comme la présence des espèces r...

Full description

Bibliographic Details
Main Author: Ishac, Nicole
Other Authors: Tours
Language:fr
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015TOUR4038/document
Description
Summary:L’hématopoïèse se déroule dans un microenvironnement spécialisé appelé niche où les cellules souches hématopoïétiques (CSH) sont en contact étroit avec les cellules stromales mésenchymateuses. Cette interaction cellulaire associée à d’autres facteurs environnementaux, comme la présence des espèces réactives à l’oxygène, est cruciale pour la régulation des CSH normales, mais aussi leucémiques. Pour étudier ce microenvironnement, il est donc important de développer un modèle in vitro de niche humaine qui mime la physiologie in vivo. Nous avons choisi comme modèle deux lignées mésenchymateuses stromales humaines HS-27a et HS-5, très peu décrites dans la littérature. Le premier objectif a été de déterminer la qualité de cette niche tant du point de vue cellulaire, moléculaire que fonctionnel. Nos résultats montrent clairement que les cellules HS-27a participent à la formation d’une niche « quiescente » alors que les cellules HS-5 représentent une niche « proliférative ». Le deuxième objectif a été de créer une niche contrôlée pour le métabolisme oxydatif en régulant l’expression d’une protéine antioxydante, la glutathion peroxydase 3 ou GPx3. L’originalité de ce travail repose sur l’utilisation d’une méthode non virale de transfert de gène par le transposon piggyBac. Le plasmide porteur du gène d'intérêt a été apporté sous forme d’ADN et une source de transposase, enzyme catalysant la réaction d'intégration sous forme d’ARNm. Notre travail montre que GPx3 est un régulateur clé de l’homéostasie hématopoïétique favorisant le maintien des progéniteurs immatures. Pour la première fois, nous créons par ingénierie in vitro une niche hématopoïétique « calibrée » capable de mimer le microenvironnement normal et leucémique. Ce modèle permet non seulement d’identifier les acteurs clés de la régulation des cellules médullaires, mais aussi de développer des stratégies thérapeutiques ciblées. === Hematopoiesis occurs in a hypoxic microenvironment or niche in which hematopoietic stem cells (HSCs) are in close contact with mesenchymal stromal cells. Cellular interactions as well as microenvironmental factors such as reactive oxygen species are crucial for the maintenance of normal and leukemic HSCs. Developing an in vitro human culture system that closely mimcs marrow physiology is therefore essential to study the niche. Here, we present a model using two human stromal cell lines, HS-27a and HS-5. Previously poorly described in the literature, we have further characterized both of these cell lines. The first objective was to assess the quality of HS-27a and HS-5 niches by investigating their cellular, molecular and functional characteristics. Our results clearly show that HS-27a cells display features of a “quiescent” niche whereas HS-5 cells rather represent a “proliferative” niche. The second objective was to engineer a hematopoietic niche where the oxidative metabolism is optimized for the expression of an antioxidant protein, glutathione peroxidase 3 (GPx3). The originality of this work is the use of a non-viral gene transfer system by using the transposon piggyBac. This strategy was achieved by delivering a DNA plasmid carrying the gene of interest, and an mRNA source of transposase, the enzyme which catalyzes the transgene integration. Functionally, GPx3 was shown to be a key regulator for sustaining hematopoietic homeostasis by maintaining immature progenitor cells. For the first time, an original non-viral gene transfer has been used to create an in vitro hematopoietic niche that recapitulates the complexity of normal and leukemic microenvironment. This niche not only provides a platform to identify regulatory factors controlling medullary cells, but may also help in the development of targeted therapeutic strategies.