Summary: | La croissance prévisionnelle du trafic aérien est telle que les moyens de gestion actuels doivent évoluer et être améliorés et l'automatisation de certains aspects de cette gestion semble être un moyen pour gérer cet accroissement du trafic tout en gardant comme invariant un niveau de sécurité constant. Toutefois, cette augmentation du trafic pourrait entraîner un accroissement de la variabilité de la performance de l'ensemble des moyens de gestion du trafic aérien, en particulier dans le cas de dégradation de cette automatisation. Les systèmes de gestion du trafic aérien sont considérés comme complexes car ils impliquent de nombreuses interactions entre humains et systèmes, et peuvent être profondément influencés par les aspects environnementaux (météorologie, organisation, stress ...) et tombent, de fait, dans la catégorie des Systèmes Sociotechniques (STS) (Emery & Trist, 1960). A cause de leur complexité, les interactions entre les différents éléments (humains, systèmes et organisations) de ces STS peuvent être linéaires et partiellement non linéaires, ce qui rend l'évolution de leur performance difficilement prévisible. Au sein de ces STS, les systèmes interactifs doivent être utilisables, i.e. permettre à leurs utilisateurs d'accomplir leurs tâches de manière efficace et efficiente. Un STS doit aussi être résilient aux perturbations telles que les défaillances logicielles et matérielles, les potentielles dégradations de l'automatisation ou les problèmes d'interaction entre les systèmes et leurs opérateurs. Ces problèmes peuvent affecter plusieurs aspects des systèmes sociotechniques comme les ressources, le temps d'exécution d'une tâche, la capacité à d'adaptation à l'environnement... Afin de pouvoir analyser l'impact de ces perturbations et d'évaluer la variabilité de la performance d'un STS, des techniques et méthodes dédiées sont requises. Elles doivent fournir un support à la modélisation et à l'analyse systématique de l'utilisabilité et de la résilience de systèmes interactifs aux comportements partiellement autonomes. Elles doivent aussi permettre de décrire et de structurer un grand nombre d'informations, ainsi que de traiter la variabilité de chaque élément du STS et la variabilité liée à leurs interrelations. Les techniques et méthodes existantes ne permettent actuellement ni de modéliser un STS dans son ensemble, ni d'en analyser les propriétés d'utilisabilité et de résilience (ou alors se focalisent sur un sous-ensemble du STS perdant, de fait, la vision systémique). === The current European Air Traffic Management (ATM) System needs to be improved for coping with the growth in air traffic forecasted for next years. It has been broadly recognised that the future ATM capacity and safety objectives can only be achieved by an intense enhancement of integrated automation support. However, increase of automation might come along with an increase of performance variability of the whole ATM System especially in case of automation degradation. ATM systems are considered complex as they encompass interactions involving humans and machines deeply influenced by environmental aspects (i.e. weather, organizational structure) making them belong to the class of Socio-Technical Systems (STS) (Emery & Trist, 1960). Due to this complexity, the interactions between the STS elements (human, system and organisational) can be partly linear and partly non-linear making its performance evolution complex and hardly predictable. Within such STS, interactive systems have to be usable i.e. enabling users to perform their tasks efficiently and effectively while ensuring a certain level of operator satisfaction. Besides, the STS has to be resilient to adverse events including potential automation degradation issues but also interaction problems between their interactive systems and the operators. These issues may affect several STS aspects such as resources, time in tasks performance, ability to adjust to environment, etc. In order to be able to analyse the impact of these perturbations and to assess the potential performance variability of a STS, dedicated techniques and methods are required. These techniques and methods have to provide support for modelling and analysing in a systematic way usability and resilience of interactive systems featuring partly autonomous behaviours. They also have to provide support for describing and structuring a large amount of information and to be able to address the variability of each of STS elements as well as the variability related to their interrelations. Current techniques, methods and processes do not enable to model a STS as a whole and to analyse both usability and resilience properties. Also, they do not embed all the elements that are required to describe and analyse each part of the STS (such as knowledge of different types which is needed by a user for accomplishing tasks or for interacting with dedicated technologies). Lastly, they do not provide means for analysing task migrations when a new technology is introduced or for analysing performance variability in case of degradation of the newly introduced automation. Such statements are argued in this thesis by a detailed analysis of existing modelling techniques and associated methods highlighting their advantages and limitations. This thesis proposes a multi-models based approach for the modelling and the analysis of partly-autonomous interactive systems for assessing their resilience and usability. The contribution is based on the identification of a set of requirements needed being able to model and analyse each of the STS elements. Some of these requirements were met by existing modelling techniques, others were reachable by extending and refining existing ones. This thesis proposes an approach which integrates 3 modelling techniques: FRAM (focused on organisational functions), HAMSTERS (centred on human goals and activities) and ICO (dedicated to the modelling of interactive systems). The principles of the multi-models approach is illustrated on an example for carefully showing the extensions proposed to the selected modelling techniques and how they integrate together. A more complex case study from the ATM World is then presented to demonstrate the scalability of the approach. This case study, dealing with aircraft route change due to bad weather conditions, highlights the ability of the integration of models to cope with performance variability of the various parts of the STS
|