Summary: | Depuis peu, la Modélisation et Simulation par Agents (ABMs) est passée d'une approche dirigée par les modèles à une approche dirigée par les données (Data Driven Approach, DDA). Cette tendance vers l’utilisation des données dans la simulation vise à appliquer les données collectées par les systèmes d’observation à la simulation (Edmonds and Moss, 2005; Hassan, 2009). Dans la DDA, les données empiriques collectées sur les systèmes cibles sont utilisées non seulement pour la simulation des modèles mais aussi pour l’initialisation, la calibration et l’évaluation des résultats issus des modèles de simulation, par exemple, le système d’estimation et de gestion des ressources hydrauliques du bassin Adour-Garonne Français (Gaudou et al., 2013) et l’invasion des rizières du delta du Mékong au Vietnam par les cicadelles brunes (Nguyen et al., 2012d). Cette évolution pose la question du « comment gérer les données empiriques et celles simulées dans de tels systèmes ». Le constat que l’on peut faire est que, si la conception et la simulation actuelles des modèles ont bénéficié des avancées informatiques à travers l’utilisation des plateformes populaires telles que Netlogo (Wilensky, 1999) ou GAMA (Taillandier et al., 2012), ce n'est pas encore le cas de la gestion des données, qui sont encore très souvent gérées de manière ad-hoc. Cette gestion des données dans des Modèles Basés Agents (ABM) est une des limitations actuelles des plateformes de simulation multiagents (SMA). Autrement dit, un tel outil de gestion des données est actuellement requis dans la construction des systèmes de simulation par agents et la gestion des bases de données correspondantes est aussi un problème important de ces systèmes. Dans cette thèse, je propose tout d’abord une structure logique pour la gestion des données dans des plateformes de SMA. La structure proposée qui intègre des solutions de l’Informatique Décisionnelle et des plateformes multi-agents s’appelle CFBM (Combination Framework of Business intelligence and Multi-agent based platform), elle a plusieurs objectifs : (1) modéliser et exécuter des SMAs, (2) gérer les données en entrée et en sortie des simulations, (3) intégrer les données de différentes sources, et (4) analyser les données à grande échelle. Ensuite, le besoin de la gestion des données dans les simulations agents est satisfait par une implémentation de CFBM dans la plateforme GAMA. Cette implémentation présente aussi une architecture logicielle pour combiner entrepôts deIv données et technologies du traitement analytique en ligne (OLAP) dans les systèmes SMAs. Enfin, CFBM est évaluée pour la gestion de données dans la plateforme GAMA à travers le développement de modèles de surveillance des cicadelles brunes (BSMs), où CFBM est utilisé non seulement pour gérer et intégrer les données empiriques collectées depuis le système cible et les résultats de simulation du modèle simulé, mais aussi calibrer et valider ce modèle. L'intérêt de CFBM réside non seulement dans l'amélioration des faiblesses des plateformes de simulation et de modélisation par agents concernant la gestion des données mais permet également de développer des systèmes de simulation complexes portant sur de nombreuses données en entrée et en sortie en utilisant l’approche dirigée par les données. === Recently, there has been a shift from modeling driven approach to data driven approach inAgent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models (Edmonds and Moss, 2005; Hassan, 2009). In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, calibration and evaluation of the output of the simulation platform such as e.g., the water resource management and assessment system of the French Adour-Garonne Basin (Gaudou et al., 2013) and the invasion of Brown Plant Hopper on the rice fields of Mekong River Delta region in Vietnam (Nguyen et al., 2012d). That raises the question how to manage empirical data and simulation data in such agentbased simulation platform. The basic observation we can make is that currently, if the design and simulation of models have benefited from advances in computer science through the popularized use of simulation platforms like Netlogo (Wilensky, 1999) or GAMA (Taillandier et al., 2012), this is not yet the case for the management of data, which are still often managed in an ad hoc manner. Data management in ABM is one of limitations of agent-based simulation platforms. Put it other words, such a database management is also an important issue in agent-based simulation systems. In this thesis, I first propose a logical framework for data management in multi-agent based simulation platforms. The proposed framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform), and it serves several purposes: (1) model and execute multi-agent simulations, (2) manage input and output data of simulations, (3) integrate data from different sources; and (4) analyze high volume of data. Secondly, I fulfill the need for data management in ABM by the implementation of CFBM in the GAMA platform. This implementation of CFBM in GAMA also demonstrates a software architecture to combine Data Warehouse (DWH) and Online Analytical Processing (OLAP) technologies into a multi-agent based simulation system. Finally, I evaluate the CFBM for data management in the GAMA platform via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used ii not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to calibrate and validate the models.The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach.
|