Summary: | Le développement de générateurs d'énergie pour alimenter des micro-appareils électroniques implantés est devenu une option inéluctable. L'objectif général qui a orienté ces recherches était l'élaboration et les études approfondies des propriétés nanomatériaux métalliques utilisables comme électrocatalyseurs afin de convertir l'énergie chimique en énergie électrique. Les nanomatériaux sont obtenus par la méthode de synthèse : Bromide Anion Exchange (BAE) qui a été scrupuleusement revisitée puis optimisée avec un agent réducteur faible (AA) et fort (NaBH4). Cette voie de synthèse a permis d'obtenir (rendement ≥ 90 %) des matériaux plurimétalliques composés d'or, de platine et de palladium. Un prétraitement des supports commerciaux des nanoparticules a permis d’augmenter leurs surfaces, spécifique et active respectivement de 48 et 120 %. Les études (électro)analytiques ont permis d'identifier les intermédiaires et produits de réaction du combustible. Le glucose s'oxyde sans rupture de la liaison C-C pour donner majoritairement du gluconate avec une sélectivité ≥ 88 %. Les tests réalisés en biopile hybride (cathode enzymatique) indiquent que les catalyseurs Au/C-AA et Au60Pt40/C-NaBH4 sont les meilleures anodes abiotiques (Pmax = 125 µW·cm-2 à 0,4 V). Par ailleurs, les piles sans membrane séparatrice et sans enzyme ont été réalisées avec succès pour activer un stimulateur cardiaque et un système de transmission d'information en mode "Wifi". Ces dispositifs, rapportés pour la première fois, ouvrent une ère nouvelle pour la conception de convertisseurs d'énergie pour alimenter les implants médicaux ou des appareils sans fil de détection et de surveillance. === The development of energy converters to power implanted micro-electronic devices has become a cornerstone item. The whole target which has governed this research was the design of advanced nanostructures metals used as electrocatalysts for converting chemical energy into electrical one. These nanomaterials were obtained by the synthesis method: Bromide Anion Exchange (BAE) that has been carefully revisited and optimized, using a weak reducing agent (AA) and strong one (NaBH4). It allowed to prepare efficiently various plurimetallic nanomaterials composed of gold, platinum and palladium (yield ≥ 90%). A thermal pretreatment of commercial carbon supports of nanoparticles has highly boosted their specific and active surface areas with a gain of 48 and 120%. Based on in situ and ex-situ (electro)analytical methods, the intermediates and final reaction products of the fuel oxidation were identified. Glucose electrooxidation occurs without C-C bond cleavage and gives predominantly gluconate with a selectivity ≥ 88 %. Results from the hybrid biofuel cell tests (with an enzyme as cathode catalyst) indicate that Au/C-AA and Au60Pt40/C-NaBH4 are the best abiotic anodes (Pmax = 125 µW cm-2 at 0.4 V cell voltage). A fuel cell without separating membrane and enzyme has been successfully constructed and used to activate a pacemaker and an information transmission system based on "wireless" mode. These last experiments, reported for the first time as using nanomaterials in membrane-less configuration, open a new approach in the design of advanced energy converters to power medical implants or remote systems for detection and electronic monitoring.
|