Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord

Cette thèse est dédiée à l'analyse mathématique de quelques problèmes variationnels motivés par le modèle de Ginzburg-Landau en théorie de la supraconductivité. Dans la première partie on étudie l'existence de solutions pour les équations de Ginzburg-Landau sans champ magnétique et avec do...

Full description

Bibliographic Details
Main Author: Rodiac, Rémy
Other Authors: Paris Est
Language:en
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015PESC1108/document
id ndltd-theses.fr-2015PESC1108
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Equations aux dérivées partielles
Analyse variationnelle
Equations de Ginzburg-Landau
Surfaces minimales
Problèmes à bord libre
Limites de mesures de vorticité
Partial differential equations
Variational analysis
Ginzburg-Landau equations
Minimal surfaces
Free boundary problems
Limits of vorticity measures

spellingShingle Equations aux dérivées partielles
Analyse variationnelle
Equations de Ginzburg-Landau
Surfaces minimales
Problèmes à bord libre
Limites de mesures de vorticité
Partial differential equations
Variational analysis
Ginzburg-Landau equations
Minimal surfaces
Free boundary problems
Limits of vorticity measures

Rodiac, Rémy
Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
description Cette thèse est dédiée à l'analyse mathématique de quelques problèmes variationnels motivés par le modèle de Ginzburg-Landau en théorie de la supraconductivité. Dans la première partie on étudie l'existence de solutions pour les équations de Ginzburg-Landau sans champ magnétique et avec données au bord de type semi-rigides. Ces données consistent à prescrire le module de la fonction sur le bord du domaine ainsi que son degré topologique. C'est un cas particulier de problèmes à bord libre, ou la donnée complète de la fonction sur le bord est une inconnue du problème. L'existence de solutions à ce problème n'est pas assurée. En effet la méthode directe du calcul des variations ne peut pas s'appliquer car le degré sur le bord n'est pas continu pour la convergence faible dans l'espace de Sobolev adapté. On dit que c'est un problème sans compacité. En étudiant le phénomène de "bubbling" qui apparaît dans l'étude de tels problèmes on donne des résultats d'existence et de non existence de solutions. Dans le Chapitre 1 on étudie des conditions qui permettent d'affirmer que la différence entre deux niveaux d'énergie est strictement optimale. Pour cela on adapte une technique due à Brezis-Coron. Ceci nous permet de redémontrer un résultat (précédemment obtenu par Berlaynd Rybalko et Dos Santos) d'existence de solutions stables pour les équations de Ginzburg-Landau dans des domaines multiplement connexes. Dans le Chapitre 2 on considère les applications harmoniques a valeurs dans $R^2$ avec des conditions au bord de type degrés prescrits sur un anneau. On fait un lien entre ce problème et la théorie des surfaces minimales dans $R^3$ grâce à la différentielle quadratique de Hopf. Ceci nous conduit à l'étude des surfaces minimales bordées par deux cercles dans des plans parallèles. On prouve l'existence de telles surfaces qui ne sont pas des catenoides grâce a un résultat de bifurcation. On utilise alors les résultats obtenus pour déduire des théorèmes d'existence et de non existence de minimiseurs de l'énergie de Ginzburg-Landau à degrés prescrits dans un anneau. Dans ce troisième Chapitre on obtient des résultats pour une valeur du paramètre " grand. Le Chapitre 4 a pour objet l'étude des problèmes a degrés prescrits en dimension n3. On y montre la non existence des minimiseurs de la n-énergie de Ginzburg-Landau a degrés prescrits dans un domaine simplement connexe. On étudie ensuite des points critiques de type min-max pour une énergie perturbée. La deuxième partie est consacrée a l'analyse asymptotique des solutions des équations deGinzburg-Landau lorsque " tend vers zero. Sandier et Serfaty ont étudié le comportement asymptotique des mesures de vorticité associées aux équations. Ils ont notamment trouvé des conditions critiques sur les mesures limites dans le cas des équations avec et sans champ magnétique. Nous nous intéressons alors à ces conditions critiques dans le cas sans champ magnétique. Le problème de la régularité locale des mesures limites se ramène ainsi a l'étude de la régularité des fonctions stationnaires harmoniques dont le Laplacien est une mesure. Nous montrons que localement de telles mesures sont supportées par une union de lignes appartenant à l'ensemble des zéros d'une fonction harmonique === This thesis is devoted to the mathematical analysis of some variational problems. These problem sare motivated by the Ginzburg-Landau model related to the super conductivity. In the first part we study existence of solutions of the Ginzburg-Landau equations without magnetic eld but with semi-sti boundary conditions. These conditions are obtained by prescribing the modulus of the function on the boundary of the domain along with its topological degree. This is a particular case of free boundary problems, where the function on the boundary is an unknown of the problem. Existence of solutions of that problem does not necessary hold. Indeed we can not apply the direct method of the calculus of variations since the degree on the boundaryis not continuous with respect to the weak convergence in an appropriated Sobolev space. This is problem with loss of compactness. By studying the bublling" phenomenon which come upin such problems we obtain some existence and non existence results .In Chapter 1 we study conditions under which the dierence between two energy levels is strictly optimal. In order to do that we adapt a technique due to Brezis-Coron. This allow us to recover known existence results (previously obtained by Berlyand and Rybalko and DosSantos) for stable solutions of the Ginzburg-Landau equations in multiply connected domains. In Chapter 2 we are interested in harmonic maps with values in $R^2$ with prescribed degree boundary condition in an annulus. We make a link between this problem and the minimal surface theory in $R^3$ thanks to the so-called Hopf quadratic differential. This leads us to study immersed minimal surfaces bounded by two circles in parallel planes. We prove the existence of such surfaces die rent from catenoids by using a bifurcation argument. We then apply the results obtained to deduce existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees. This is done in Chapter 3 where the results are obtained for large ".Chapter 4 is devoted to prescribed degree problems in dimension n3 . We prove the non existence of minimizers of the Ginzburg-Landau energy in simply connected domains. We then study min-max critical points of a perturbed energy. The second part is devoted to the asymptotic analysis of solutions of the Ginzburg-Landau equations when "goes to zero. Sandier and Serfaty studied the asymptotic behavior of the vorticity measures associated to these equations. They derived critical conditions on the limiting measures both with and without magnetic Field. We are interested by these conditions when there is no magnetic Field. The problem of the local regularity of the limiting measures is then equivalent to the study of regularity of stationary harmonic functions whose Laplacianis a measure. We show that locally such measures are concentrated on a union of lines which belong to the zero set of an harmonic function
author2 Paris Est
author_facet Paris Est
Rodiac, Rémy
author Rodiac, Rémy
author_sort Rodiac, Rémy
title Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
title_short Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
title_full Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
title_fullStr Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
title_full_unstemmed Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
title_sort méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord
publishDate 2015
url http://www.theses.fr/2015PESC1108/document
work_keys_str_mv AT rodiacremy methodesvariationnellespourdesproblemessouscontraintededegresprescritsaubord
AT rodiacremy variationalmethodsforproblemswithprescribeddegreesboundaryconditions
_version_ 1718493030930972672
spelling ndltd-theses.fr-2015PESC11082017-07-08T04:34:42Z Méthodes variationnelles pour des problèmes sous contrainte de degrés prescrits au bord Variational methods for problems with prescribed degrees boundary conditions Equations aux dérivées partielles Analyse variationnelle Equations de Ginzburg-Landau Surfaces minimales Problèmes à bord libre Limites de mesures de vorticité Partial differential equations Variational analysis Ginzburg-Landau equations Minimal surfaces Free boundary problems Limits of vorticity measures Cette thèse est dédiée à l'analyse mathématique de quelques problèmes variationnels motivés par le modèle de Ginzburg-Landau en théorie de la supraconductivité. Dans la première partie on étudie l'existence de solutions pour les équations de Ginzburg-Landau sans champ magnétique et avec données au bord de type semi-rigides. Ces données consistent à prescrire le module de la fonction sur le bord du domaine ainsi que son degré topologique. C'est un cas particulier de problèmes à bord libre, ou la donnée complète de la fonction sur le bord est une inconnue du problème. L'existence de solutions à ce problème n'est pas assurée. En effet la méthode directe du calcul des variations ne peut pas s'appliquer car le degré sur le bord n'est pas continu pour la convergence faible dans l'espace de Sobolev adapté. On dit que c'est un problème sans compacité. En étudiant le phénomène de "bubbling" qui apparaît dans l'étude de tels problèmes on donne des résultats d'existence et de non existence de solutions. Dans le Chapitre 1 on étudie des conditions qui permettent d'affirmer que la différence entre deux niveaux d'énergie est strictement optimale. Pour cela on adapte une technique due à Brezis-Coron. Ceci nous permet de redémontrer un résultat (précédemment obtenu par Berlaynd Rybalko et Dos Santos) d'existence de solutions stables pour les équations de Ginzburg-Landau dans des domaines multiplement connexes. Dans le Chapitre 2 on considère les applications harmoniques a valeurs dans $R^2$ avec des conditions au bord de type degrés prescrits sur un anneau. On fait un lien entre ce problème et la théorie des surfaces minimales dans $R^3$ grâce à la différentielle quadratique de Hopf. Ceci nous conduit à l'étude des surfaces minimales bordées par deux cercles dans des plans parallèles. On prouve l'existence de telles surfaces qui ne sont pas des catenoides grâce a un résultat de bifurcation. On utilise alors les résultats obtenus pour déduire des théorèmes d'existence et de non existence de minimiseurs de l'énergie de Ginzburg-Landau à degrés prescrits dans un anneau. Dans ce troisième Chapitre on obtient des résultats pour une valeur du paramètre " grand. Le Chapitre 4 a pour objet l'étude des problèmes a degrés prescrits en dimension n3. On y montre la non existence des minimiseurs de la n-énergie de Ginzburg-Landau a degrés prescrits dans un domaine simplement connexe. On étudie ensuite des points critiques de type min-max pour une énergie perturbée. La deuxième partie est consacrée a l'analyse asymptotique des solutions des équations deGinzburg-Landau lorsque " tend vers zero. Sandier et Serfaty ont étudié le comportement asymptotique des mesures de vorticité associées aux équations. Ils ont notamment trouvé des conditions critiques sur les mesures limites dans le cas des équations avec et sans champ magnétique. Nous nous intéressons alors à ces conditions critiques dans le cas sans champ magnétique. Le problème de la régularité locale des mesures limites se ramène ainsi a l'étude de la régularité des fonctions stationnaires harmoniques dont le Laplacien est une mesure. Nous montrons que localement de telles mesures sont supportées par une union de lignes appartenant à l'ensemble des zéros d'une fonction harmonique This thesis is devoted to the mathematical analysis of some variational problems. These problem sare motivated by the Ginzburg-Landau model related to the super conductivity. In the first part we study existence of solutions of the Ginzburg-Landau equations without magnetic eld but with semi-sti boundary conditions. These conditions are obtained by prescribing the modulus of the function on the boundary of the domain along with its topological degree. This is a particular case of free boundary problems, where the function on the boundary is an unknown of the problem. Existence of solutions of that problem does not necessary hold. Indeed we can not apply the direct method of the calculus of variations since the degree on the boundaryis not continuous with respect to the weak convergence in an appropriated Sobolev space. This is problem with loss of compactness. By studying the bublling" phenomenon which come upin such problems we obtain some existence and non existence results .In Chapter 1 we study conditions under which the dierence between two energy levels is strictly optimal. In order to do that we adapt a technique due to Brezis-Coron. This allow us to recover known existence results (previously obtained by Berlyand and Rybalko and DosSantos) for stable solutions of the Ginzburg-Landau equations in multiply connected domains. In Chapter 2 we are interested in harmonic maps with values in $R^2$ with prescribed degree boundary condition in an annulus. We make a link between this problem and the minimal surface theory in $R^3$ thanks to the so-called Hopf quadratic differential. This leads us to study immersed minimal surfaces bounded by two circles in parallel planes. We prove the existence of such surfaces die rent from catenoids by using a bifurcation argument. We then apply the results obtained to deduce existence and non existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees. This is done in Chapter 3 where the results are obtained for large ".Chapter 4 is devoted to prescribed degree problems in dimension n3 . We prove the non existence of minimizers of the Ginzburg-Landau energy in simply connected domains. We then study min-max critical points of a perturbed energy. The second part is devoted to the asymptotic analysis of solutions of the Ginzburg-Landau equations when "goes to zero. Sandier and Serfaty studied the asymptotic behavior of the vorticity measures associated to these equations. They derived critical conditions on the limiting measures both with and without magnetic Field. We are interested by these conditions when there is no magnetic Field. The problem of the local regularity of the limiting measures is then equivalent to the study of regularity of stationary harmonic functions whose Laplacianis a measure. We show that locally such measures are concentrated on a union of lines which belong to the zero set of an harmonic function Electronic Thesis or Dissertation Text en http://www.theses.fr/2015PESC1108/document Rodiac, Rémy 2015-09-11 Paris Est Sandier, Etienne