Summary: | L'émergence et la croissance rapide des services multimédia dans les réseaux IP ont créé de nouveaux défis pour les fournisseurs de services réseau, qui, au-delà de la Qualité de Service (QoS) issue des paramètres techniques de leur réseau, doivent aussi garantir la meilleure qualité de perception utilisateur (Quality of Experience, QoE) dans des réseaux variés avec différentes technologies d'accès. Habituellement, différentes méthodes et techniques sont utilisées pour prédire le niveau de satisfaction de l'utilisateur, en analysant l'effet combiné de multiples facteurs. Dans cette thèse, nous nous intéressons à la commande du réseau en intégrant à la fois des aspects qualitatifs (perception du niveau de satisfaction de l'usager) et quantitatifs (mesure de paramètres réseau) dans l'objectif de développer des mécanismes capables, à la fois, de s'adapter à la variabilité des mesures collectées et d'améliorer la qualité de perception. Pour ce faire, nous avons étudié le cas de deux services multimédia populaires, qui sont : le streaming vidéo, et la voix sur IP (VoIP). Nous investiguons la QoE utilisateur de ces services selon trois aspects : (1) les méthodologies d'évaluation subjective de la QoE, dans le cadre d'un service vidéo, (2) les techniques d'adaptation de flux vidéo pour garantir un certain niveau de QoE, et (3) les méthodes d'allocation de ressource, tenant compte de la QoE tout en économisant l'énergie, dans le cadre d'un service de VoIP (LTE-A). Nous présentons d'abord deux méthodes pour récolter des jeux de données relatifs à la QoE. Nous utilisons ensuite ces jeux de données (issus des campagnes d'évaluation subjective que nous avons menées) pour comprendre l'influence de différents paramètres (réseau, terminal, profil utilisateur) sur la perception d'un utilisateur d'un service vidéo. Nous proposons ensuite un algorithme de streaming vidéo adaptatif, implémenté dans un client HTTP, et dont le but est d'assurer un certain niveau de QoE et le comparons à l'état de l'art. Notre algorithme tient compte de trois paramètres de QoS (bande passante, taille de mémoires tampons de réception et taux de pertes de paquets) et sélectionne dynamiquement la qualité vidéo appropriée en fonction des conditions du réseau et des propriétés du terminal de l'utilisateur. Enfin, nous proposons QEPEM (QoE Power Efficient Method), un algorithme d'ordonnancement basé sur la QoE, dans le cadre d'un réseau sans fil LTE, en nous intéressant à une allocation dynamique des ressources radio en tenant compte de la consommation énergétique === The emerging and fast growth of multimedia services have created new challenges for network service providers in order to guarantee the best user's Quality of Experience (QoE) in diverse networks with distinctive access technologies. Usually, various methods and techniques are used to predict the user satisfaction level by studying the combined impact of numerous factors. In this thesis, we consider two important multimedia services to evaluate the user perception, which are: video streaming service, and VoIP. This study investigates user's QoE that follows three directions: (1) methodologies for subjective QoE assessment of video services, (2) regulating user's QoE using video a rate adaptive algorithm, and (3) QoE-based power efficient resource allocation methods for Long Term Evaluation-Advanced (LTE-A) for VoIP. Initially, we describe two subjective methods to collect the dataset for assessing the user's QoE. The subjectively collected dataset is used to investigate the influence of different parameters (e.g. QoS, video types, user profile, etc.) on user satisfaction while using the video services. Later, we propose a client-based HTTP rate adaptive video streaming algorithm over TCP protocol to regulate the user's QoE. The proposed method considers three Quality of Service (QoS) parameters that govern the user perception, which are: Bandwidth, Buffer, and dropped Frame rate (BBF). The BBF method dynamically selects the suitable video quality according to network conditions and user's device properties. Lastly, we propose a QoE driven downlink scheduling method, i.e. QoE Power Escient Method (QEPEM) for LTE-A. It esciently allocates the radio resources, and optimizes the use of User Equipment (UE) power utilizing the Discontinuous Reception (DRX) method in LTE-A
|