Minimal sets, existence and regularity

Cette thèse s’intéresse principalement à l’existence et à la régularité desensembles minimaux. On commence par montrer, dans le chapitre 3, que le problème de Plateau étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’onse donne un ensemble compact B⊂R^n et un sous-groupe L d...

Full description

Bibliographic Details
Main Author: Fang, Yangqin
Other Authors: Paris 11
Language:en
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015PA112191/document
id ndltd-theses.fr-2015PA112191
record_format oai_dc
spelling ndltd-theses.fr-2015PA1121912019-05-18T03:42:03Z Minimal sets, existence and regularity Ensembles minimaux, existence et régularité Problème de Plateau Ensembles quasiminimaux Intégrants Cônes minimaux Ensembles minimaux Mesure de Hausdorff Plateau problem Quasiminimal sets Integrands Minimal cones Minimal sets Hausdorff measure Cette thèse s’intéresse principalement à l’existence et à la régularité desensembles minimaux. On commence par montrer, dans le chapitre 3, que le problème de Plateau étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’onse donne un ensemble compact B⊂R^n et un sous-groupe L du groupe d’homologie de Čech H_(d-1) (B;G) de dimension (d-1) sur un groupe abelien G, on montre qu’il existe un ensemble compact E⊃B tel que L est contenu dans le noyau de l’homomorphisme H_(d-1) (B;G)→H_(d-1) (E;G) induit par l’application d’inclusion B→E, et pour lequel la mesure de Hausdorff H^d (E∖B) est minimale (sous ces contraintes). Ensuite, on montre au chapitre 4, que pour tout ensemble presque minimal glissant E de dimension 2, dans un domaine régulier Σ ressemblant localement à un demi espace, associé à la frontière glissante ∂Σ, et tel que E⊃∂Σ, il se trouve qu’à la frontière E est localement équivalent, par un homéomorphisme biHöldérien qui préserve la frontière, à un cône minimal glissant contenu dans un demi plan Ω, avec frontière glissante ∂Ω. De plus les seuls cônes minimaux possibles dans ce cas sont ∂Ω seul, ou son union avec un cône de type P_+ ou Y_+. This thesis focuses on the existence and regularity of minimal sets. First we show, in Chapter 3, that there exists (at least) a minimizerfor Reifenberg Plateau problems. That is, Given a compact set B⊂R^n, and a subgroup L of the Čech homology group H_(d-1) (B;G) of dimension (d-1)over an abelian group G, we will show that there exists a compact set E⊃B such that L is contained in the kernel of the homomorphism H_(d-1) (B;G)→H_(d-1) (E;G) induced by the natural inclusion map B→E, and such that the Hausdorff measure H^d (E∖B) is minimal under these constraints. Next we will show, in Chapter 4, that if E is a sliding almost minimal set of dimension 2, in a smooth domain Σ that looks locally like a half space, and with sliding boundary , and if in addition E⊃∂Σ, then, near every point of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a cone of type P_+ or Y_+. Electronic Thesis or Dissertation Text Image StillImage en http://www.theses.fr/2015PA112191/document Fang, Yangqin 2015-09-21 Paris 11 David, Guy
collection NDLTD
language en
sources NDLTD
topic Problème de Plateau
Ensembles quasiminimaux
Intégrants
Cônes minimaux
Ensembles minimaux
Mesure de Hausdorff
Plateau problem
Quasiminimal sets
Integrands
Minimal cones
Minimal sets
Hausdorff measure

spellingShingle Problème de Plateau
Ensembles quasiminimaux
Intégrants
Cônes minimaux
Ensembles minimaux
Mesure de Hausdorff
Plateau problem
Quasiminimal sets
Integrands
Minimal cones
Minimal sets
Hausdorff measure

Fang, Yangqin
Minimal sets, existence and regularity
description Cette thèse s’intéresse principalement à l’existence et à la régularité desensembles minimaux. On commence par montrer, dans le chapitre 3, que le problème de Plateau étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’onse donne un ensemble compact B⊂R^n et un sous-groupe L du groupe d’homologie de Čech H_(d-1) (B;G) de dimension (d-1) sur un groupe abelien G, on montre qu’il existe un ensemble compact E⊃B tel que L est contenu dans le noyau de l’homomorphisme H_(d-1) (B;G)→H_(d-1) (E;G) induit par l’application d’inclusion B→E, et pour lequel la mesure de Hausdorff H^d (E∖B) est minimale (sous ces contraintes). Ensuite, on montre au chapitre 4, que pour tout ensemble presque minimal glissant E de dimension 2, dans un domaine régulier Σ ressemblant localement à un demi espace, associé à la frontière glissante ∂Σ, et tel que E⊃∂Σ, il se trouve qu’à la frontière E est localement équivalent, par un homéomorphisme biHöldérien qui préserve la frontière, à un cône minimal glissant contenu dans un demi plan Ω, avec frontière glissante ∂Ω. De plus les seuls cônes minimaux possibles dans ce cas sont ∂Ω seul, ou son union avec un cône de type P_+ ou Y_+. === This thesis focuses on the existence and regularity of minimal sets. First we show, in Chapter 3, that there exists (at least) a minimizerfor Reifenberg Plateau problems. That is, Given a compact set B⊂R^n, and a subgroup L of the Čech homology group H_(d-1) (B;G) of dimension (d-1)over an abelian group G, we will show that there exists a compact set E⊃B such that L is contained in the kernel of the homomorphism H_(d-1) (B;G)→H_(d-1) (E;G) induced by the natural inclusion map B→E, and such that the Hausdorff measure H^d (E∖B) is minimal under these constraints. Next we will show, in Chapter 4, that if E is a sliding almost minimal set of dimension 2, in a smooth domain Σ that looks locally like a half space, and with sliding boundary , and if in addition E⊃∂Σ, then, near every point of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a cone of type P_+ or Y_+.
author2 Paris 11
author_facet Paris 11
Fang, Yangqin
author Fang, Yangqin
author_sort Fang, Yangqin
title Minimal sets, existence and regularity
title_short Minimal sets, existence and regularity
title_full Minimal sets, existence and regularity
title_fullStr Minimal sets, existence and regularity
title_full_unstemmed Minimal sets, existence and regularity
title_sort minimal sets, existence and regularity
publishDate 2015
url http://www.theses.fr/2015PA112191/document
work_keys_str_mv AT fangyangqin minimalsetsexistenceandregularity
AT fangyangqin ensemblesminimauxexistenceetregularite
_version_ 1719191483343437824