Summary: | Un plasma est défini comme un gaz partiellement ou totalement ionisé. Bien que très présent dans l'univers visible, les plasmas naturels sont rares sur Terre. Cependant, ils représentent un intérêt majeur pour les industries et les instituts de recherche (traitement de surface, propulsion spatiale). Toutefois, la compréhension du comportement d'un plasma est complexe et fait appel à de nombreux domaines de la physique. De plus, ces plasmas peuvent être magnétisé i.e. lorsqu'un champ magnétique extérieur ou induit influence significativement la trajectoire des particules : r/L<1 où r est le rayon de Larmor et L la longueur caractéristique du système. Ce travail de thèse s'intéresse à la modélisation du comportement du plasma présent dans deux dispositifs : l'accélérateur de l'Injecteur de Neutres (IdN) rapides d'ITER et le magnétron en régime DC ou HiPIMS. La réalisation de la fusion nucléaire sur Terre fait actuellement l'objet de nombreuses recherche dans le monde. Du fait de l'énergie nécessaire au franchissement de la barrière de répulsion coulombienne, le plasma doit être confiné. Dans le cas d'ITER, le confinement est réalisé par de puissant champ magnétique. Cependant, pour atteindre les conditions nécessaires aux réactions de fusion, notamment en température, un injecteur de particules neutres à haute énergie (1MeV) est nécessaire. L'accélération de ces particules est une phase critique dans la création du faisceau de neutres et elle représente un défi technologique qui fait l'objet d'une étude dans ce travail de thèse. Le magnétron est un procédé industriel permettant la réalisation de couches minces par pulvérisation cathodique. Les ions créés par un plasma de décharge arrachent les atomes de la cathode qui se déposent sur l'anode. Le champ magnétique créé par des aimants permanents piège les électrons à proximité de la cathode augmentant l'efficacité du dispositif. Le comportement du plasma magnétron est ainsi étudié en régime continu ou pulsé ainsi que l'apparition de structures auto-organisées en rotation autour de l'axe du magnétron dans certaines conditions. Afin d'étudier ces dispositifs, plusieurs programmes de simulation numérique ont été développés. La méthode Paticle-In-Cell a été choisie car elle permet de prendre en compte la charge d'espace des particules de manière auto-cohérente. Diverses techniques (technique de collision nulle, Monte Carlo Collision, a posteriori Monte Carlo) et améliorations (maillage non uniforme, projections de charges au troisième ordre) ont été développées et implémentées. De plus, une méthode originale, Pseudo 3D, permettant un traitement à trois dimension du magnétron a été utilisées avec succès. Enfin, ces programmes ont été parallélisés afin de réduire le temps de calcul. === A plasma is defined as a partially or completely ionized gas. Even though, they are very present in the visible universe, natural plasmas are rare on Earth. However, they are a major interest for industries and research institutes (surface treatment, spatial propulsion). Nevertheless, the understanding of plasma behavior is complicated because of the numerous physical fields involved. Moreover, theses plasmas can be magnetized, i.e., a magnetic field, external or induced, affects significantly the particle trajectories: r/L<1 where r is the Larmor radius and L the typical length of the system. This thesis is focused on the plasma modeling in two device: the accelerator of the ITER's neutral beam injector (NBI) and the magnetron in DC or HiPIMS regime. The feasibility of nuclear fusion on Earth is subject of numerous research around the world. Because of the energy necessary to get over the Coulomb barrier, the plasma must be confined. For ITER, the confinement is achieved by intense magnetic fields. However, to reach the required conditions of nuclear fusion reactions, especially in temperature, a high energy (1MeV) neutral beam injector is needed. The particle acceleration is a critical part in the creation of the neutral beam and it represents a technical challenge which is studied in this thesis work. The magnetron is an industrial process for creating thin film by physical sputtering. The ions created by a plasma discharge tear the atoms out of the cathode which are then deposited on the anode. The magnetic field created by permanent magnets trap the electrons near the cathode improving the process efficiency. The plasma behavior inside the magnetron is studied in direct and pulsed current as well as the appearance of self-organized structures in rotation around the magnetron axis. To study these devices, several program of numerical simulation have been developed. The Particle-In-Cell methode has been chosen because it takes into account, self-consistently, the space charge of the particules. Several techniques (null collision technique, Monte Carlo Collision, a posteriori Monte Carlo) and improvement (Non uniform mesh, third order charge projection) have been developed and implemented. Moreover, an original method, Pseudo 3D, allowing a three dimensional study of the magnetron, has been used with success. Finally, these programs have been parallelized to reduce the computation time.
|