Deep Neural Networks for Large Vocabulary Handwritten Text Recognition
La transcription automatique du texte dans les documents manuscrits a de nombreuses applications, allant du traitement automatique des documents à leur indexation ou leur compréhension. L'une des approches les plus populaires de nos jours consiste à parcourir l'image d'une ligne de te...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2015
|
Subjects: | |
Online Access: | http://www.theses.fr/2015PA112062/document |
id |
ndltd-theses.fr-2015PA112062 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Reconnaissance de formes Modèles de Markov Cachés Réseaux de Neurones Reconnaissance de l'Ecriture Manuscrite Pattern Recognition Hidden Markov Models Neural Nerworks Handwriting Recognition |
spellingShingle |
Reconnaissance de formes Modèles de Markov Cachés Réseaux de Neurones Reconnaissance de l'Ecriture Manuscrite Pattern Recognition Hidden Markov Models Neural Nerworks Handwriting Recognition Bluche, Théodore Deep Neural Networks for Large Vocabulary Handwritten Text Recognition |
description |
La transcription automatique du texte dans les documents manuscrits a de nombreuses applications, allant du traitement automatique des documents à leur indexation ou leur compréhension. L'une des approches les plus populaires de nos jours consiste à parcourir l'image d'une ligne de texte avec une fenêtre glissante, de laquelle un certain nombre de caractéristiques sont extraites, et modélisées par des Modèles de Markov Cachés (MMC). Quand ils sont associés à des réseaux de neurones, comme des Perceptrons Multi-Couches (PMC) ou Réseaux de Neurones Récurrents de type Longue Mémoire à Court Terme (RNR-LMCT), et à un modèle de langue, ces modèles produisent de bonnes transcriptions. D'autre part, dans de nombreuses applications d'apprentissage automatique, telles que la reconnaissance de la parole ou d'images, des réseaux de neurones profonds, comportant plusieurs couches cachées, ont récemment permis une réduction significative des taux d'erreur.Dans cette thèse, nous menons une étude poussée de différents aspects de modèles optiques basés sur des réseaux de neurones profonds dans le cadre de systèmes hybrides réseaux de neurones / MMC, dans le but de mieux comprendre et évaluer leur importance relative. Dans un premier temps, nous montrons que des réseaux de neurones profonds apportent des améliorations cohérentes et significatives par rapport à des réseaux ne comportant qu'une ou deux couches cachées, et ce quel que soit le type de réseau étudié, PMC ou RNR, et d'entrée du réseau, caractéristiques ou pixels. Nous montrons également que les réseaux de neurones utilisant les pixels directement ont des performances comparables à ceux utilisant des caractéristiques de plus haut niveau, et que la profondeur des réseaux est un élément important de la réduction de l'écart de performance entre ces deux types d'entrées, confirmant la théorie selon laquelle les réseaux profonds calculent des représentations pertinantes, de complexités croissantes, de leurs entrées, en apprenant les caractéristiques de façon automatique. Malgré la domination flagrante des RNR-LMCT dans les publications récentes en reconnaissance d'écriture manuscrite, nous montrons que des PMCs profonds atteignent des performances comparables. De plus, nous avons évalué plusieurs critères d'entrainement des réseaux. Avec un entrainement discriminant de séquences, nous reportons, pour des systèmes PMC/MMC, des améliorations comparables à celles observées en reconnaissance de la parole. Nous montrons également que la méthode de Classification Temporelle Connexionniste est particulièrement adaptée aux RNRs. Enfin, la technique du dropout a récemment été appliquée aux RNR. Nous avons testé son effet à différentes positions relatives aux connexions récurrentes des RNRs, et nous montrons l'importance du choix de ces positions.Nous avons mené nos expériences sur trois bases de données publiques, qui représentent deux langues (l'anglais et le français), et deux époques, en utilisant plusieurs types d'entrées pour les réseaux de neurones : des caractéristiques prédéfinies, et les simples valeurs de pixels. Nous avons validé notre approche en participant à la compétition HTRtS en 2014, où nous avons obtenu la deuxième place. Les résultats des systèmes présentés dans cette thèse, avec les deux types de réseaux de neurones et d'entrées, sont comparables à l'état de l'art sur les bases Rimes et IAM, et leur combinaison dépasse les meilleurs résultats publiés sur les trois bases considérées. === The automatic transcription of text in handwritten documents has many applications, from automatic document processing, to indexing and document understanding. One of the most popular approaches nowadays consists in scanning the text line image with a sliding window, from which features are extracted, and modeled by Hidden Markov Models (HMMs). Associated with neural networks, such as Multi-Layer Perceptrons (MLPs) or Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs), and with a language model, these models yield good transcriptions. On the other hand, in many machine learning applications, including speech recognition and computer vision, deep neural networks consisting of several hidden layers recently produced a significant reduction of error rates. In this thesis, we have conducted a thorough study of different aspects of optical models based on deep neural networks in the hybrid neural network / HMM scheme, in order to better understand and evaluate their relative importance. First, we show that deep neural networks produce consistent and significant improvements over networks with one or two hidden layers, independently of the kind of neural network, MLP or RNN, and of input, handcrafted features or pixels. Then, we show that deep neural networks with pixel inputs compete with those using handcrafted features, and that depth plays an important role in the reduction of the performance gap between the two kinds of inputs, supporting the idea that deep neural networks effectively build hierarchical and relevant representations of their inputs, and that features are automatically learnt on the way. Despite the dominance of LSTM-RNNs in the recent literature of handwriting recognition, we show that deep MLPs achieve comparable results. Moreover, we evaluated different training criteria. With sequence-discriminative training, we report similar improvements for MLP/HMMs as those observed in speech recognition. We also show how the Connectionist Temporal Classification framework is especially suited to RNNs. Finally, the novel dropout technique to regularize neural networks was recently applied to LSTM-RNNs. We tested its effect at different positions in LSTM-RNNs, thus extending previous works, and we show that its relative position to the recurrent connections is important. We conducted the experiments on three public databases, representing two languages (English and French) and two epochs, using different kinds of neural network inputs: handcrafted features and pixels. We validated our approach by taking part to the HTRtS contest in 2014. The results of the final systems presented in this thesis, namely MLPs and RNNs, with handcrafted feature or pixel inputs, are comparable to the state-of-the-art on Rimes and IAM. Moreover, the combination of these systems outperformed all published results on the considered databases. |
author2 |
Paris 11 |
author_facet |
Paris 11 Bluche, Théodore |
author |
Bluche, Théodore |
author_sort |
Bluche, Théodore |
title |
Deep Neural Networks for Large Vocabulary Handwritten Text Recognition |
title_short |
Deep Neural Networks for Large Vocabulary Handwritten Text Recognition |
title_full |
Deep Neural Networks for Large Vocabulary Handwritten Text Recognition |
title_fullStr |
Deep Neural Networks for Large Vocabulary Handwritten Text Recognition |
title_full_unstemmed |
Deep Neural Networks for Large Vocabulary Handwritten Text Recognition |
title_sort |
deep neural networks for large vocabulary handwritten text recognition |
publishDate |
2015 |
url |
http://www.theses.fr/2015PA112062/document |
work_keys_str_mv |
AT bluchetheodore deepneuralnetworksforlargevocabularyhandwrittentextrecognition AT bluchetheodore reseauxdeneuronesprofondspourlareconnaissancedetextemanucritalargevocabulaire |
_version_ |
1719191206915735552 |
spelling |
ndltd-theses.fr-2015PA1120622019-05-18T03:40:43Z Deep Neural Networks for Large Vocabulary Handwritten Text Recognition Réseaux de Neurones Profonds pour la Reconnaissance de Texte Manucrit à Large Vocabulaire Reconnaissance de formes Modèles de Markov Cachés Réseaux de Neurones Reconnaissance de l'Ecriture Manuscrite Pattern Recognition Hidden Markov Models Neural Nerworks Handwriting Recognition La transcription automatique du texte dans les documents manuscrits a de nombreuses applications, allant du traitement automatique des documents à leur indexation ou leur compréhension. L'une des approches les plus populaires de nos jours consiste à parcourir l'image d'une ligne de texte avec une fenêtre glissante, de laquelle un certain nombre de caractéristiques sont extraites, et modélisées par des Modèles de Markov Cachés (MMC). Quand ils sont associés à des réseaux de neurones, comme des Perceptrons Multi-Couches (PMC) ou Réseaux de Neurones Récurrents de type Longue Mémoire à Court Terme (RNR-LMCT), et à un modèle de langue, ces modèles produisent de bonnes transcriptions. D'autre part, dans de nombreuses applications d'apprentissage automatique, telles que la reconnaissance de la parole ou d'images, des réseaux de neurones profonds, comportant plusieurs couches cachées, ont récemment permis une réduction significative des taux d'erreur.Dans cette thèse, nous menons une étude poussée de différents aspects de modèles optiques basés sur des réseaux de neurones profonds dans le cadre de systèmes hybrides réseaux de neurones / MMC, dans le but de mieux comprendre et évaluer leur importance relative. Dans un premier temps, nous montrons que des réseaux de neurones profonds apportent des améliorations cohérentes et significatives par rapport à des réseaux ne comportant qu'une ou deux couches cachées, et ce quel que soit le type de réseau étudié, PMC ou RNR, et d'entrée du réseau, caractéristiques ou pixels. Nous montrons également que les réseaux de neurones utilisant les pixels directement ont des performances comparables à ceux utilisant des caractéristiques de plus haut niveau, et que la profondeur des réseaux est un élément important de la réduction de l'écart de performance entre ces deux types d'entrées, confirmant la théorie selon laquelle les réseaux profonds calculent des représentations pertinantes, de complexités croissantes, de leurs entrées, en apprenant les caractéristiques de façon automatique. Malgré la domination flagrante des RNR-LMCT dans les publications récentes en reconnaissance d'écriture manuscrite, nous montrons que des PMCs profonds atteignent des performances comparables. De plus, nous avons évalué plusieurs critères d'entrainement des réseaux. Avec un entrainement discriminant de séquences, nous reportons, pour des systèmes PMC/MMC, des améliorations comparables à celles observées en reconnaissance de la parole. Nous montrons également que la méthode de Classification Temporelle Connexionniste est particulièrement adaptée aux RNRs. Enfin, la technique du dropout a récemment été appliquée aux RNR. Nous avons testé son effet à différentes positions relatives aux connexions récurrentes des RNRs, et nous montrons l'importance du choix de ces positions.Nous avons mené nos expériences sur trois bases de données publiques, qui représentent deux langues (l'anglais et le français), et deux époques, en utilisant plusieurs types d'entrées pour les réseaux de neurones : des caractéristiques prédéfinies, et les simples valeurs de pixels. Nous avons validé notre approche en participant à la compétition HTRtS en 2014, où nous avons obtenu la deuxième place. Les résultats des systèmes présentés dans cette thèse, avec les deux types de réseaux de neurones et d'entrées, sont comparables à l'état de l'art sur les bases Rimes et IAM, et leur combinaison dépasse les meilleurs résultats publiés sur les trois bases considérées. The automatic transcription of text in handwritten documents has many applications, from automatic document processing, to indexing and document understanding. One of the most popular approaches nowadays consists in scanning the text line image with a sliding window, from which features are extracted, and modeled by Hidden Markov Models (HMMs). Associated with neural networks, such as Multi-Layer Perceptrons (MLPs) or Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs), and with a language model, these models yield good transcriptions. On the other hand, in many machine learning applications, including speech recognition and computer vision, deep neural networks consisting of several hidden layers recently produced a significant reduction of error rates. In this thesis, we have conducted a thorough study of different aspects of optical models based on deep neural networks in the hybrid neural network / HMM scheme, in order to better understand and evaluate their relative importance. First, we show that deep neural networks produce consistent and significant improvements over networks with one or two hidden layers, independently of the kind of neural network, MLP or RNN, and of input, handcrafted features or pixels. Then, we show that deep neural networks with pixel inputs compete with those using handcrafted features, and that depth plays an important role in the reduction of the performance gap between the two kinds of inputs, supporting the idea that deep neural networks effectively build hierarchical and relevant representations of their inputs, and that features are automatically learnt on the way. Despite the dominance of LSTM-RNNs in the recent literature of handwriting recognition, we show that deep MLPs achieve comparable results. Moreover, we evaluated different training criteria. With sequence-discriminative training, we report similar improvements for MLP/HMMs as those observed in speech recognition. We also show how the Connectionist Temporal Classification framework is especially suited to RNNs. Finally, the novel dropout technique to regularize neural networks was recently applied to LSTM-RNNs. We tested its effect at different positions in LSTM-RNNs, thus extending previous works, and we show that its relative position to the recurrent connections is important. We conducted the experiments on three public databases, representing two languages (English and French) and two epochs, using different kinds of neural network inputs: handcrafted features and pixels. We validated our approach by taking part to the HTRtS contest in 2014. The results of the final systems presented in this thesis, namely MLPs and RNNs, with handcrafted feature or pixel inputs, are comparable to the state-of-the-art on Rimes and IAM. Moreover, the combination of these systems outperformed all published results on the considered databases. Electronic Thesis or Dissertation Text Image StillImage en http://www.theses.fr/2015PA112062/document Bluche, Théodore 2015-05-13 Paris 11 Ney, Hermann |