Analyse mathématique de modèles de trafic routier congestionné

Cette thèse est dédiée à l'étude mathématique de quelques modèles de trafic routier congestionné. La notion essentielle est l'équilibre de Wardrop. Elle poursuit des travaux de Carlier et Santambrogio avec des coauteurs. Baillon et Carlier ont étudié le cas de grilles cartésiennes dans $\R...

Full description

Bibliographic Details
Main Author: Hatchi, Roméo
Other Authors: Paris 9
Language:en
Published: 2015
Subjects:
515
Online Access:http://www.theses.fr/2015PA090048/document
id ndltd-theses.fr-2015PA090048
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Problème de Monge
Trafic congestionné
Équilibre de Wardrop
Gamma-Convergence
Courbes généralisées
Conditions d'optimalité
Mesure d'Young
Problème de Beckmann
EDPs anisotropiques et dégénérées
Lagrangien augmenté
Simulations numériques
Distance de Finsler
Monge problem
Congested traffic
Wardrop equilibrium
Gamma-Convergence
Generalized curves
Optimality conditions
Young's measure
Beckmann problem
Anisotropic and degenerated PDEs
Augmented Lagrangian
Numerical simulations
Finsler distance
515
spellingShingle Problème de Monge
Trafic congestionné
Équilibre de Wardrop
Gamma-Convergence
Courbes généralisées
Conditions d'optimalité
Mesure d'Young
Problème de Beckmann
EDPs anisotropiques et dégénérées
Lagrangien augmenté
Simulations numériques
Distance de Finsler
Monge problem
Congested traffic
Wardrop equilibrium
Gamma-Convergence
Generalized curves
Optimality conditions
Young's measure
Beckmann problem
Anisotropic and degenerated PDEs
Augmented Lagrangian
Numerical simulations
Finsler distance
515
Hatchi, Roméo
Analyse mathématique de modèles de trafic routier congestionné
description Cette thèse est dédiée à l'étude mathématique de quelques modèles de trafic routier congestionné. La notion essentielle est l'équilibre de Wardrop. Elle poursuit des travaux de Carlier et Santambrogio avec des coauteurs. Baillon et Carlier ont étudié le cas de grilles cartésiennes dans $\RR^2$ de plus en plus denses, dans le cadre de la théorie de $\Gamma$-convergence. Trouver l'équilibre de Wardrop revient à résoudre des problèmes de minimisation convexe. Dans le chapitre 2, nous regardons ce qui se passe dans le cas de réseaux généraux, de plus en plus denses, dans $\RR^d$. Des difficultés nouvelles surgissent par rapport au cas initial de réseaux cartésiens et pour les contourner, nous introduisons la notion de courbes généralisées. Des hypothèses structurelles sur ces suites de réseaux discrets sont nécessaires pour s'assurer de la convergence. Cela fait alors apparaître des fonctions qui sont des sortes de distances de Finsler et qui rendent compte de l'anisotropie du réseau. Nous obtenons ainsi des résultats similaires à ceux du cas cartésien. Dans le chapitre 3, nous étudions le modèle continu et en particulier, les problèmes limites. Nous trouvons alors des conditions d'optimalité à travers une formulation duale qui peut être interprétée en termes d'équilibres continus de Wardrop. Cependant, nous travaillons avec des courbes généralisées et nous ne pouvons pas appliquer directement le théorème de Prokhorov, comme cela a été le cas dans \cite{baillon2012discrete, carlier2008optimal}. Pour pouvoir néanmoins l'utiliser, nous considérons une version relaxée du problème limite, avec des mesures d'Young. Dans le chapitre 4, nous nous concentrons sur le cas de long terme, c'est-à-dire, nous fixons uniquement les distributions d'offre et de demande. Comme montré dans \cite{brasco2013congested}, le problème de l'équilibre de Wardrop est équivalent à un problème à la Beckmann et il se réduit à résoudre une EDP elliptique, anisotropique et dégénérée. Nous utilisons la méthode de résolution numérique de Lagrangien augmenté présentée dans \cite{benamou2013augmented} pour proposer des exemples de simulation. Enfin, le chapitre 5 a pour objet l'étude de problèmes de Monge avec comme coût une distance de Finsler. Cela se reformule en des problèmes de flux minimal et une discrétisation de ces problèmes mène à un problème de point-selle. Nous le résolvons alors numériquement, encore grâce à un algorithme de Lagrangien augmenté. === This thesis is devoted to the mathematical analysis of some models of congested road traffic. The essential notion is the Wardrop equilibrium. It continues Carlier and Santambrogio's works with coauthors. With Baillon they studied the case of two-dimensional cartesian networks that become very dense in the framework of $\Gamma$-convergence theory. Finding Wardrop equilibria is equivalent to solve convex minimisation problems.In Chapter 2 we look at what happens in the case of general networks, increasingly dense. New difficulties appear with respect to the original case of cartesian networks. To deal with these difficulties we introduce the concept of generalized curves. Structural assumptions on these sequences of discrete networks are necessary to obtain convergence. Sorts of Finsler distance are used and keep track of anisotropy of the network. We then have similar results to those in the cartesian case.In Chapter 3 we study the continuous model and in particular the limit problems. Then we find optimality conditions through a duale formulation that can be interpreted in terms of continuous Wardrop equilibria. However we work with generalized curves and we cannot directly apply Prokhorov's theorem, as in \cite{baillon2012discrete, carlier2008optimal}. To use it we consider a relaxed version of the limit problem with Young's measures. In Chapter 4 we focus on the long-term case, that is, we fix only the distributions of supply and demand. As shown in \cite{brasco2013congested} the problem of Wardrop equilibria can be reformulated in a problem à la Beckmann and reduced to solve an elliptic anisotropic and degenerated PDE. We use the augmented Lagrangian scheme presented in \cite{benamou2013augmented} to show a few numerical simulation examples. Finally Chapter 5 is devoted to studying Monge problems with as cost a Finsler distance. It leads to minimal flow problems. Discretization of these problems is equivalent to a saddle-point problem. We then solve it numerically again by an augmented Lagrangian algorithm.
author2 Paris 9
author_facet Paris 9
Hatchi, Roméo
author Hatchi, Roméo
author_sort Hatchi, Roméo
title Analyse mathématique de modèles de trafic routier congestionné
title_short Analyse mathématique de modèles de trafic routier congestionné
title_full Analyse mathématique de modèles de trafic routier congestionné
title_fullStr Analyse mathématique de modèles de trafic routier congestionné
title_full_unstemmed Analyse mathématique de modèles de trafic routier congestionné
title_sort analyse mathématique de modèles de trafic routier congestionné
publishDate 2015
url http://www.theses.fr/2015PA090048/document
work_keys_str_mv AT hatchiromeo analysemathematiquedemodelesdetraficroutiercongestionne
AT hatchiromeo mathematicalanalysisofmodelsofcongestedroadtraffic
_version_ 1718491371798528000
spelling ndltd-theses.fr-2015PA0900482017-07-06T04:35:25Z Analyse mathématique de modèles de trafic routier congestionné Mathematical analysis of models of congested road traffic Problème de Monge Trafic congestionné Équilibre de Wardrop Gamma-Convergence Courbes généralisées Conditions d'optimalité Mesure d'Young Problème de Beckmann EDPs anisotropiques et dégénérées Lagrangien augmenté Simulations numériques Distance de Finsler Monge problem Congested traffic Wardrop equilibrium Gamma-Convergence Generalized curves Optimality conditions Young's measure Beckmann problem Anisotropic and degenerated PDEs Augmented Lagrangian Numerical simulations Finsler distance 515 Cette thèse est dédiée à l'étude mathématique de quelques modèles de trafic routier congestionné. La notion essentielle est l'équilibre de Wardrop. Elle poursuit des travaux de Carlier et Santambrogio avec des coauteurs. Baillon et Carlier ont étudié le cas de grilles cartésiennes dans $\RR^2$ de plus en plus denses, dans le cadre de la théorie de $\Gamma$-convergence. Trouver l'équilibre de Wardrop revient à résoudre des problèmes de minimisation convexe. Dans le chapitre 2, nous regardons ce qui se passe dans le cas de réseaux généraux, de plus en plus denses, dans $\RR^d$. Des difficultés nouvelles surgissent par rapport au cas initial de réseaux cartésiens et pour les contourner, nous introduisons la notion de courbes généralisées. Des hypothèses structurelles sur ces suites de réseaux discrets sont nécessaires pour s'assurer de la convergence. Cela fait alors apparaître des fonctions qui sont des sortes de distances de Finsler et qui rendent compte de l'anisotropie du réseau. Nous obtenons ainsi des résultats similaires à ceux du cas cartésien. Dans le chapitre 3, nous étudions le modèle continu et en particulier, les problèmes limites. Nous trouvons alors des conditions d'optimalité à travers une formulation duale qui peut être interprétée en termes d'équilibres continus de Wardrop. Cependant, nous travaillons avec des courbes généralisées et nous ne pouvons pas appliquer directement le théorème de Prokhorov, comme cela a été le cas dans \cite{baillon2012discrete, carlier2008optimal}. Pour pouvoir néanmoins l'utiliser, nous considérons une version relaxée du problème limite, avec des mesures d'Young. Dans le chapitre 4, nous nous concentrons sur le cas de long terme, c'est-à-dire, nous fixons uniquement les distributions d'offre et de demande. Comme montré dans \cite{brasco2013congested}, le problème de l'équilibre de Wardrop est équivalent à un problème à la Beckmann et il se réduit à résoudre une EDP elliptique, anisotropique et dégénérée. Nous utilisons la méthode de résolution numérique de Lagrangien augmenté présentée dans \cite{benamou2013augmented} pour proposer des exemples de simulation. Enfin, le chapitre 5 a pour objet l'étude de problèmes de Monge avec comme coût une distance de Finsler. Cela se reformule en des problèmes de flux minimal et une discrétisation de ces problèmes mène à un problème de point-selle. Nous le résolvons alors numériquement, encore grâce à un algorithme de Lagrangien augmenté. This thesis is devoted to the mathematical analysis of some models of congested road traffic. The essential notion is the Wardrop equilibrium. It continues Carlier and Santambrogio's works with coauthors. With Baillon they studied the case of two-dimensional cartesian networks that become very dense in the framework of $\Gamma$-convergence theory. Finding Wardrop equilibria is equivalent to solve convex minimisation problems.In Chapter 2 we look at what happens in the case of general networks, increasingly dense. New difficulties appear with respect to the original case of cartesian networks. To deal with these difficulties we introduce the concept of generalized curves. Structural assumptions on these sequences of discrete networks are necessary to obtain convergence. Sorts of Finsler distance are used and keep track of anisotropy of the network. We then have similar results to those in the cartesian case.In Chapter 3 we study the continuous model and in particular the limit problems. Then we find optimality conditions through a duale formulation that can be interpreted in terms of continuous Wardrop equilibria. However we work with generalized curves and we cannot directly apply Prokhorov's theorem, as in \cite{baillon2012discrete, carlier2008optimal}. To use it we consider a relaxed version of the limit problem with Young's measures. In Chapter 4 we focus on the long-term case, that is, we fix only the distributions of supply and demand. As shown in \cite{brasco2013congested} the problem of Wardrop equilibria can be reformulated in a problem à la Beckmann and reduced to solve an elliptic anisotropic and degenerated PDE. We use the augmented Lagrangian scheme presented in \cite{benamou2013augmented} to show a few numerical simulation examples. Finally Chapter 5 is devoted to studying Monge problems with as cost a Finsler distance. It leads to minimal flow problems. Discretization of these problems is equivalent to a saddle-point problem. We then solve it numerically again by an augmented Lagrangian algorithm. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015PA090048/document Hatchi, Roméo 2015-12-02 Paris 9 Carlier, Guillaume