Existence et stabilité de solutions fortes en théorie cinétique des gaz

Cette thèse est centrée sur l’étude d’équations issues de la théorie cinétique des gaz. Dans tous les problèmes qui y sont explorés, une analyse des problèmes linéaires ou linéarisés associés est réalisée d’un point de vue spectral et du point de vue des semi-groupes. A cela s’ajoute une analyse de...

Full description

Bibliographic Details
Main Author: Tristani, Isabelle
Other Authors: Paris 9
Language:en
Published: 2015
Subjects:
515
Online Access:http://www.theses.fr/2015PA090013/document
id ndltd-theses.fr-2015PA090013
record_format oai_dc
spelling ndltd-theses.fr-2015PA0900132017-07-05T04:33:21Z Existence et stabilité de solutions fortes en théorie cinétique des gaz Existence and stability of strong solutions in kinetic theory Théorie cinétique Équation de Boltzmann Collisions inélastiques Équation de Boltzmann sans cut-Off Équation de Landau Potentiels durs Potentiels faiblement mous Équation de Fokker-Planck Diffusion fractionnaire Retour à l’équilibre Convergence exponentielle Trou spectral Décroissance du semi-Groupe Hypodissipativité Kinetic theory Boltzmann equation Inelastic collisions Boltzmann equation without cut-Off Landau equation Hard potentials Moderately soft potentials Fokker-Planck equation Fractional diffusion Trend to equilibrium Exponential convergence Spectral gap Semigroup decay Hypodissipativity 515 Cette thèse est centrée sur l’étude d’équations issues de la théorie cinétique des gaz. Dans tous les problèmes qui y sont explorés, une analyse des problèmes linéaires ou linéarisés associés est réalisée d’un point de vue spectral et du point de vue des semi-groupes. A cela s’ajoute une analyse de la stabilité non linéaire lorsque le modèle est non linéaire. Plus précisément, dans une première partie, nous nous intéressons aux équations de Fokker-Planck fractionnaire et Boltzmann sans cut-off homogène en espace et nous prouvons un retour vers l’équilibre des solutions de ces équations avec un taux exponentiel dans des espaces de type L1 à poids polynomial. Concernant l’équation de Landau inhomogène en espace, nous développons une théorie de Cauchy de solutions perturbatives dans des espaces de type L2 avec différents poids (polynomiaux ou exponentiels) et nous prouvons également la stabilité exponentielle de ces solutions.Nous démontrons ensuite pour l’équation de Boltzmann inélastique inhomogène avec terme diffusif le même type de résultat dans des espaces L1 à poids polynomial dans un régime de faible inélasticité. Pour finir, nous étudions dans un cadre général et uniforme des modèles qui convergent vers l’équation de Fokker-Planck du point de vue de l’analyse spectrale et des semi-groupes. The topic of this thesis is the study of models coming from kinetic theory. In all the problems that are addressed, the associated linear or linearized problem is analyzed from a spectral point of view and from the point of view of semigroups. Tothat, we add the study of the nonlinear stability when the equation is nonlinear. More precisely, to begin with, we treat the problem of trend to equilibrium for the fractional Fokker-Planck and Boltzmann without cut-off equations, proving an exponential decay to equilibrium in spaces of type L1 with polynomial weights. Concerning the inhomogeneous Landau equation, we develop a Cauchy theory of perturbative solutions in spaces of type L2 with various weights such as polynomial and exponential weights and we also prove the exponential stability of these solutions. Then, we prove similar results for the inhomogeneous inelastic diffusively driven Boltzmann equation in a small inelasticity regime in L1 spaces with polynomial weights. Finally, we study in the same and uniform framework from the spectral analysis point of view with a semigroup approach several Fokker-Planck equations which converge towards the classical one. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015PA090013/document Tristani, Isabelle 2015-06-22 Paris 9 Mischler, Stéphane
collection NDLTD
language en
sources NDLTD
topic Théorie cinétique
Équation de Boltzmann
Collisions inélastiques
Équation de Boltzmann sans cut-Off
Équation de Landau
Potentiels durs
Potentiels faiblement mous
Équation de Fokker-Planck
Diffusion fractionnaire
Retour à l’équilibre
Convergence exponentielle
Trou spectral
Décroissance du semi-Groupe
Hypodissipativité
Kinetic theory
Boltzmann equation
Inelastic collisions
Boltzmann equation without cut-Off
Landau equation
Hard potentials
Moderately soft potentials
Fokker-Planck equation
Fractional diffusion
Trend to equilibrium
Exponential convergence
Spectral gap
Semigroup decay
Hypodissipativity
515
spellingShingle Théorie cinétique
Équation de Boltzmann
Collisions inélastiques
Équation de Boltzmann sans cut-Off
Équation de Landau
Potentiels durs
Potentiels faiblement mous
Équation de Fokker-Planck
Diffusion fractionnaire
Retour à l’équilibre
Convergence exponentielle
Trou spectral
Décroissance du semi-Groupe
Hypodissipativité
Kinetic theory
Boltzmann equation
Inelastic collisions
Boltzmann equation without cut-Off
Landau equation
Hard potentials
Moderately soft potentials
Fokker-Planck equation
Fractional diffusion
Trend to equilibrium
Exponential convergence
Spectral gap
Semigroup decay
Hypodissipativity
515
Tristani, Isabelle
Existence et stabilité de solutions fortes en théorie cinétique des gaz
description Cette thèse est centrée sur l’étude d’équations issues de la théorie cinétique des gaz. Dans tous les problèmes qui y sont explorés, une analyse des problèmes linéaires ou linéarisés associés est réalisée d’un point de vue spectral et du point de vue des semi-groupes. A cela s’ajoute une analyse de la stabilité non linéaire lorsque le modèle est non linéaire. Plus précisément, dans une première partie, nous nous intéressons aux équations de Fokker-Planck fractionnaire et Boltzmann sans cut-off homogène en espace et nous prouvons un retour vers l’équilibre des solutions de ces équations avec un taux exponentiel dans des espaces de type L1 à poids polynomial. Concernant l’équation de Landau inhomogène en espace, nous développons une théorie de Cauchy de solutions perturbatives dans des espaces de type L2 avec différents poids (polynomiaux ou exponentiels) et nous prouvons également la stabilité exponentielle de ces solutions.Nous démontrons ensuite pour l’équation de Boltzmann inélastique inhomogène avec terme diffusif le même type de résultat dans des espaces L1 à poids polynomial dans un régime de faible inélasticité. Pour finir, nous étudions dans un cadre général et uniforme des modèles qui convergent vers l’équation de Fokker-Planck du point de vue de l’analyse spectrale et des semi-groupes. === The topic of this thesis is the study of models coming from kinetic theory. In all the problems that are addressed, the associated linear or linearized problem is analyzed from a spectral point of view and from the point of view of semigroups. Tothat, we add the study of the nonlinear stability when the equation is nonlinear. More precisely, to begin with, we treat the problem of trend to equilibrium for the fractional Fokker-Planck and Boltzmann without cut-off equations, proving an exponential decay to equilibrium in spaces of type L1 with polynomial weights. Concerning the inhomogeneous Landau equation, we develop a Cauchy theory of perturbative solutions in spaces of type L2 with various weights such as polynomial and exponential weights and we also prove the exponential stability of these solutions. Then, we prove similar results for the inhomogeneous inelastic diffusively driven Boltzmann equation in a small inelasticity regime in L1 spaces with polynomial weights. Finally, we study in the same and uniform framework from the spectral analysis point of view with a semigroup approach several Fokker-Planck equations which converge towards the classical one.
author2 Paris 9
author_facet Paris 9
Tristani, Isabelle
author Tristani, Isabelle
author_sort Tristani, Isabelle
title Existence et stabilité de solutions fortes en théorie cinétique des gaz
title_short Existence et stabilité de solutions fortes en théorie cinétique des gaz
title_full Existence et stabilité de solutions fortes en théorie cinétique des gaz
title_fullStr Existence et stabilité de solutions fortes en théorie cinétique des gaz
title_full_unstemmed Existence et stabilité de solutions fortes en théorie cinétique des gaz
title_sort existence et stabilité de solutions fortes en théorie cinétique des gaz
publishDate 2015
url http://www.theses.fr/2015PA090013/document
work_keys_str_mv AT tristaniisabelle existenceetstabilitedesolutionsfortesentheoriecinetiquedesgaz
AT tristaniisabelle existenceandstabilityofstrongsolutionsinkinetictheory
_version_ 1718490603798396928