Creative Adaptation through Learning

Les robots ont profondément transformé l’industrie manufacturière et sont susceptibles de délivrer de grands bénéfices pour la société, par exemple en intervenant sur des lieux de catastrophes naturelles, lors de secours à la personne ou dans le cadre de la santé et des transports. Ce sont aussi des...

Full description

Bibliographic Details
Main Author: Cully, Antoine
Other Authors: Paris 6
Language:en
Published: 2015
Subjects:
004
Online Access:http://www.theses.fr/2015PA066664/document
id ndltd-theses.fr-2015PA066664
record_format oai_dc
spelling ndltd-theses.fr-2015PA0666642019-12-22T04:45:20Z Creative Adaptation through Learning Adaptation Créative par Apprentissage Robotique Intelligence artificielle Apprentissage Adaptation Algorithmes evolutionnistes Résilience Damage recovery Learning algorithm Artificial intelligence 004 Les robots ont profondément transformé l’industrie manufacturière et sont susceptibles de délivrer de grands bénéfices pour la société, par exemple en intervenant sur des lieux de catastrophes naturelles, lors de secours à la personne ou dans le cadre de la santé et des transports. Ce sont aussi des outils précieux pour la recherche scientifique, comme pour l’exploration des planètes ou des fonds marins. L’un des obstacles majeurs à leur utilisation en dehors des environnements parfaitement contrôlés des usines ou des laboratoires, est leur fragilité. Alors que les animaux peuvent rapidement s’adapter à des blessures, les robots actuels ont des difficultés à faire preuve de créativité lorsqu’ils doivent surmonter un problème inattendu: ils sont limités aux capteurs qu’ils embarquent et ne peuvent diagnostiquer que les situations qui ont été anticipées par leur concepteurs. Dans cette thèse, nous proposons une approche différente qui consiste à laisser le robot apprendre de lui-même un comportement palliant la panne. Cependant, les méthodes actuelles d’apprentissage sont lentes même lorsque l’espace de recherche est petit et contraint. Pour surmonter cette limitation et permettre une adaptation rapide et créative, nous combinons la créativité des algorithmes évolutionnistes avec la rapidité des algorithmes de recherche de politique à travers trois contributions : les répertoires comportementaux, l’adaptation aux dommages et le transfert de connaissance entre plusieurs tâches. D’une manière générale, ces travaux visent à apporter les fondations algorithmiques permettant aux robots physiques d’être plus robustes, performants et autonomes. Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, for example in search and rescue, disaster response, health care, and transportation. They are also invaluable tools for scientific exploration of distant planets or deep oceans. A major obstacle to their widespread adoption in more complex environments and outside of factories is their fragility. While animals can quickly adapt to injuries, current robots cannot “think outside the box” to find a compensatory behavior when they are damaged: they are limited to their pre-specified self-sensing abilities, which can diagnose only anticipated failure modes and strongly increase the overall complexity of the robot. In this thesis, we propose a different approach that considers having robots learn appropriate behaviors in response to damage. However, current learning techniques are slow even with small, constrained search spaces. To allow fast and creative adaptation, we combine the creativity of evolutionary algorithms with the learning speed of policy search algorithms through three contributions: the behavioral repertoires, the damage recovery using these repertoires and the transfer of knowledge across tasks. Globally, this work aims to provide the algorithmic foundations that will allow physical robots to be more robust, effective and autonomous. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015PA066664/document Cully, Antoine 2015-12-21 Paris 6 Doncieux, Stéphane Mouret, Jean-Baptiste
collection NDLTD
language en
sources NDLTD
topic Robotique
Intelligence artificielle
Apprentissage
Adaptation
Algorithmes evolutionnistes
Résilience
Damage recovery
Learning algorithm
Artificial intelligence
004
spellingShingle Robotique
Intelligence artificielle
Apprentissage
Adaptation
Algorithmes evolutionnistes
Résilience
Damage recovery
Learning algorithm
Artificial intelligence
004
Cully, Antoine
Creative Adaptation through Learning
description Les robots ont profondément transformé l’industrie manufacturière et sont susceptibles de délivrer de grands bénéfices pour la société, par exemple en intervenant sur des lieux de catastrophes naturelles, lors de secours à la personne ou dans le cadre de la santé et des transports. Ce sont aussi des outils précieux pour la recherche scientifique, comme pour l’exploration des planètes ou des fonds marins. L’un des obstacles majeurs à leur utilisation en dehors des environnements parfaitement contrôlés des usines ou des laboratoires, est leur fragilité. Alors que les animaux peuvent rapidement s’adapter à des blessures, les robots actuels ont des difficultés à faire preuve de créativité lorsqu’ils doivent surmonter un problème inattendu: ils sont limités aux capteurs qu’ils embarquent et ne peuvent diagnostiquer que les situations qui ont été anticipées par leur concepteurs. Dans cette thèse, nous proposons une approche différente qui consiste à laisser le robot apprendre de lui-même un comportement palliant la panne. Cependant, les méthodes actuelles d’apprentissage sont lentes même lorsque l’espace de recherche est petit et contraint. Pour surmonter cette limitation et permettre une adaptation rapide et créative, nous combinons la créativité des algorithmes évolutionnistes avec la rapidité des algorithmes de recherche de politique à travers trois contributions : les répertoires comportementaux, l’adaptation aux dommages et le transfert de connaissance entre plusieurs tâches. D’une manière générale, ces travaux visent à apporter les fondations algorithmiques permettant aux robots physiques d’être plus robustes, performants et autonomes. === Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, for example in search and rescue, disaster response, health care, and transportation. They are also invaluable tools for scientific exploration of distant planets or deep oceans. A major obstacle to their widespread adoption in more complex environments and outside of factories is their fragility. While animals can quickly adapt to injuries, current robots cannot “think outside the box” to find a compensatory behavior when they are damaged: they are limited to their pre-specified self-sensing abilities, which can diagnose only anticipated failure modes and strongly increase the overall complexity of the robot. In this thesis, we propose a different approach that considers having robots learn appropriate behaviors in response to damage. However, current learning techniques are slow even with small, constrained search spaces. To allow fast and creative adaptation, we combine the creativity of evolutionary algorithms with the learning speed of policy search algorithms through three contributions: the behavioral repertoires, the damage recovery using these repertoires and the transfer of knowledge across tasks. Globally, this work aims to provide the algorithmic foundations that will allow physical robots to be more robust, effective and autonomous.
author2 Paris 6
author_facet Paris 6
Cully, Antoine
author Cully, Antoine
author_sort Cully, Antoine
title Creative Adaptation through Learning
title_short Creative Adaptation through Learning
title_full Creative Adaptation through Learning
title_fullStr Creative Adaptation through Learning
title_full_unstemmed Creative Adaptation through Learning
title_sort creative adaptation through learning
publishDate 2015
url http://www.theses.fr/2015PA066664/document
work_keys_str_mv AT cullyantoine creativeadaptationthroughlearning
AT cullyantoine adaptationcreativeparapprentissage
_version_ 1719305587332743168