Expansions géométriques et ampleur
Le résultat principal de cette thèse est l'étude de l'ampleur dans des expansions des structures géométriques et de SU-rang oméga par un prédicat dense/codense indépendant. De plus, nous étudions le rapport entre l'ampleur et l'équationalite, donnant une preuve directe de l'...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr en |
Published: |
2015
|
Subjects: | |
Online Access: | http://www.theses.fr/2015LYO10067/document |
Summary: | Le résultat principal de cette thèse est l'étude de l'ampleur dans des expansions des structures géométriques et de SU-rang oméga par un prédicat dense/codense indépendant. De plus, nous étudions le rapport entre l'ampleur et l'équationalite, donnant une preuve directe de l'équationalite de certaines théories CM-triviales. Enfin, nous considérons la topologie indiscernable et son lien avec l'équationalite et calculons la complexité indiscernable du pseudoplan libre === The main result of this thesis is the study of how ampleness grows in geometric and SU-rank omega structures when adding a new independent dense/codense subset. In another direction, we explore relations of ampleness with equational theories; there, we give a direct proof of the equationality of certain CM-trivial theories. Finally, we study indiscernible closed sets—which are closely related with equations—and measure their complexity in the free pseudoplane |
---|