Nombres de Schur classiques et faibles
Le thème central de cette thèse porte sur des partitions en n parties de l'intervalle entier [1, N] = {1,2,...,N} excluant la présence, dans chaque partie, de solution de l'équation x + y = z dans le cas classique, ou seulement de telles solutions avec x ≠ y dans le cas faible. Pour n donn...
Main Author: | Rafilipojaona, Fanasina Alinirina |
---|---|
Other Authors: | Littoral |
Language: | fr |
Published: |
2015
|
Subjects: | |
Online Access: | http://www.theses.fr/2015DUNK0368/document |
Similar Items
-
Schur-Power Convexity of a Completely Symmetric Function Dual
by: Huan-Nan Shi, et al.
Published: (2019-07-01) -
Schur-convexity for compositions of complete symmetric function dual
by: Huan-Nan Shi, et al.
Published: (2020-03-01) -
Schur-Convexity for a Class of Completely Symmetric Function Dual
by: Huan-Nan Shia, et al.
Published: (2019-06-01) -
Necessary and sufficient conditions on the Schur convexity of a bivariate mean
by: Hong-Ping Yin, et al.
Published: (2021-10-01) -
OMPLEMENTARY OF CLASSICAL MEANS WITH RESPECT TO HERON MEAN AND THEIR SCHUR CONVEXITIES
by: K M Nagaraja, et al.
Published: (2021-06-01)