Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion
Ce manuscrit présente une nouvelle formulation de l’Interaction Laser-Plasma (ILP) à l’échelle hydrodynamique, qui couple la dynamique du plasma avec les processus d’ILP linéaires et non-linéaires. Le modèle standard du tracé de rayon (Ray-Tracing), basé sur l’Optique Géométrique, est peu adapté pou...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2015
|
Subjects: | |
Online Access: | http://www.theses.fr/2015BORD0253/document |
id |
ndltd-theses.fr-2015BORD0253 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Interaction Laser-Plasma Code Hydrodynamique Processus d’ILP non-linéaires Rayons épais Électrons chauds Échange d’énergie entre faisceaux croisés FCI Laser-Plasma Interaction Hydrodynamic code Nonlinear LPI processes Thick-rays Hot electrons Cross- Beam Energy Transfer ICF |
spellingShingle |
Interaction Laser-Plasma Code Hydrodynamique Processus d’ILP non-linéaires Rayons épais Électrons chauds Échange d’énergie entre faisceaux croisés FCI Laser-Plasma Interaction Hydrodynamic code Nonlinear LPI processes Thick-rays Hot electrons Cross- Beam Energy Transfer ICF Colaitis, Arnaud Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
description |
Ce manuscrit présente une nouvelle formulation de l’Interaction Laser-Plasma (ILP) à l’échelle hydrodynamique, qui couple la dynamique du plasma avec les processus d’ILP linéaires et non-linéaires. Le modèle standard du tracé de rayon (Ray-Tracing), basé sur l’Optique Géométrique, est peu adapté pour modéliser l’ILP non-linéaire car la distribution de l’intensité laser dans le plasma n’est pas directement disponible. Nous proposons un modèle alternatif spécifiquement formulé pour un code hydrodynamique Lagrangien, basé sur l’Optique Géométrique Complexe Paraxiale qui décrit la propagation de faisceaux Gaussiens. Cette méthode est ensuite adaptée à la description de faisceaux laser non Gaussiens, et permet de reproduire la statistique d’intensité, l’enveloppe et le contraste de faisceaux lissés par une Lame de Phase. Nous proposons des modèles en ligne pour décrire l’échange d’énergie entre faisceaux croisés (CBET) et la génération d’électrons rapides par l’ILP non-linéaire, en utilisant PCGO. Le modèle en ligne de CBET est validé par comparaison avec un code de propagation d’une onde électromagnétique paraxial conventionnel dans le cas d’un plasma inhomogène en vitesse. Un bon accord est trouvé après une période transitoire de l’ordre de la picoseconde, notamment en ce qui concerne la distribution spatiale de l’intensité laser et des perturbations de densité du plasma. Ce modèle appliqué à une configuration d’attaque directe de Fusion par Confinement Inertiel (FCI) montre que le CBET réduit le couplage laser-cible, réduit le facteur de convergence, et amplifie les modes basse fréquence de déformation de la capsule. Le modèle de génération d’électrons rapides par l’ILP non-linéaire modélise les propriétés des faisceaux d’électrons rapides, i.e. leur flux, énergie moyenne, dispersions angulaire et direction, à partir de l’intensité laser prédite par PCGO et à partir d’expressions simplifiées, basées sur des modèles théoriques et des lois d’échelles obtenues à l’aide de simulations cinétiques. La propagation et le dépôt d’énergie par les électrons rapides est décrite à partir d’une approximation de diffusion angulaire adaptée en deux dimensions, pour des faisceaux de profil transverse d’intensité Gaussien, de distribution d’énergie exponentielle et d’ouverture angulaire arbitraire. Ce modèle couplé rend compte de (i) la compétition pour l’énergie laser entre les différentes instabilités et avec l’absorption collisionnelle, (ii) le couplage entre l’ILP non-linéaire et la dynamique du plasma à travers les faisceaux d’électrons rapides, et(iii) la perte de couplage laser-plasma due à la diffusion Raman arrière. Les performances de ce modèle sont évaluées par comparaisons avec des expériences d’allumage par choc conduites sur les installations laser Omega et Pals. Ce modèle multi-échelle est ensuite utilisé pour interpréter plusieurs expériences. On trouve notamment que les électrons générés par l’ILP non-linéaire augmentent la vitesse du choc et la pression en aval de ce dernier, tout en réduisant sa force et la pression d’ablation. Une application à la phase fortement non-linéaire de l’allumage par choc en FCI suggère que ces électrons sont néfastes pour l’implosion de la capsule en ce qui concerne les cibles conventionnelles : ceux-ci causent une augmentation de la masse du point chaud et des pertes radiatives. Ce modèle peut être appliqué à la modélisation hydrodynamique des expériences laser-cible de physique des hautes densités d’énergie pour les régimes d’interaction pertinents pour les instabilités évoquées ci dessus. === This manuscript presents a novel formulation of the Laser-Plasma Interaction (LPI) at hydrodynamical scales, that couples the plasma dynamics with linear and nonlinear LPI processes. The standard Ray Tracing model, based on Geometrical Optics, is not well suited for that purpose because it does not readily describe the laser intensity distribution in plasma. We propose an alternative model formulated for a Lagrangian hydrodynamic code. It is based on the ray-based Paraxial Complex Geometrical Optics (PCGO) that describes Gaussian optical beamlets. A method for modeling non-Gaussian laser beams smoothed by Phase Plates is presented, that allows to create intensity variations that reproduce the beam envelope, contrast and high-intensity statistics predicted by paraxial laser propagation codes. We propose inline reduced models for the non-linear laser-plasma interaction, in the case of the Cross-Beam Energy Transfer (CBET) and the generation of Hot Electrons (HE). The inline CBET model is validated against a time-dependent conventional paraxial electromagnetic wave propagation code, in a well-defined plasma configuration with density and velocity profiles corresponding to an inhomogeneous plasma. Good agreement is found past a transient period on the picosecond time scale, notably for the spatial distribution of density perturbations and laser intensities in the interaction region. Application of the model to a direct-drive Inertial Confinement Fusion (ICF) configuration shows that CBET significantly degrades the irradiation symmetry by amplifying low frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell areal density and lower convergence ratios. The LPI/HE model predicts the HE fluxes, temperatures, angular dispersion and direction from the laser intensity of PCGO beamlets from simplified expressions based on theoretical models and scaling laws obtained in kinetic simulations. The HE beams propagation and energy deposition in plasma is described in the angular scattering approximation, adapted to two-dimensional, transversally Gaussian, multigroup HE beams of arbitrary angular distribution. This model accounts for (i) competition for the laser energy between the various instabilities and with the linear collisional absorption, (ii) coupling between nonlinear LPIs and plasma dynamics via the high energy electron beams and(iii) loss of coupling due to backscattered Raman light. Its performance is confirmed by comparison with measurements of shock timing, laser absorption, HE fluxes and temperatures in experiments conducted on Omega and Pals laser facilities. This multiscale inline LPI-HE model is used to interpret several Shock Ignition experiments. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure. Applications to the high-intensity regime of shock ignition ICF suggest that HEs generated by the nonlinear LPI are nefarious to the capsule implosion in conventional target designs, as they lead to a dramatic increase in the hotspot mass and losses by Bremsstrahlung radiation. This model is readily applicable to hydrodynamic description of laser-target experiments of High Energy Density Physics, in the interaction regimes involving the above-mentioned non-linear LPI processes. |
author2 |
Bordeaux |
author_facet |
Bordeaux Colaitis, Arnaud |
author |
Colaitis, Arnaud |
author_sort |
Colaitis, Arnaud |
title |
Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
title_short |
Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
title_full |
Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
title_fullStr |
Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
title_full_unstemmed |
Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
title_sort |
multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion |
publishDate |
2015 |
url |
http://www.theses.fr/2015BORD0253/document |
work_keys_str_mv |
AT colaitisarnaud multiscaledescriptionofthelaserplasmainteractionapplicationtothephysicsofshockignitionininertialconfinementfusion AT colaitisarnaud descriptionmultiechelledelinteractionlaserplasmaapplicationalaphysiquedelallumageparchocenfusionparconfinementinertiel |
_version_ |
1718491223549804544 |
spelling |
ndltd-theses.fr-2015BORD02532017-07-06T04:36:52Z Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion Description multi-échelle de l'interaction laser-plasma : application à la physique de l'allumage par choc en fusion par confinement inertiel Interaction Laser-Plasma Code Hydrodynamique Processus d’ILP non-linéaires Rayons épais Électrons chauds Échange d’énergie entre faisceaux croisés FCI Laser-Plasma Interaction Hydrodynamic code Nonlinear LPI processes Thick-rays Hot electrons Cross- Beam Energy Transfer ICF Ce manuscrit présente une nouvelle formulation de l’Interaction Laser-Plasma (ILP) à l’échelle hydrodynamique, qui couple la dynamique du plasma avec les processus d’ILP linéaires et non-linéaires. Le modèle standard du tracé de rayon (Ray-Tracing), basé sur l’Optique Géométrique, est peu adapté pour modéliser l’ILP non-linéaire car la distribution de l’intensité laser dans le plasma n’est pas directement disponible. Nous proposons un modèle alternatif spécifiquement formulé pour un code hydrodynamique Lagrangien, basé sur l’Optique Géométrique Complexe Paraxiale qui décrit la propagation de faisceaux Gaussiens. Cette méthode est ensuite adaptée à la description de faisceaux laser non Gaussiens, et permet de reproduire la statistique d’intensité, l’enveloppe et le contraste de faisceaux lissés par une Lame de Phase. Nous proposons des modèles en ligne pour décrire l’échange d’énergie entre faisceaux croisés (CBET) et la génération d’électrons rapides par l’ILP non-linéaire, en utilisant PCGO. Le modèle en ligne de CBET est validé par comparaison avec un code de propagation d’une onde électromagnétique paraxial conventionnel dans le cas d’un plasma inhomogène en vitesse. Un bon accord est trouvé après une période transitoire de l’ordre de la picoseconde, notamment en ce qui concerne la distribution spatiale de l’intensité laser et des perturbations de densité du plasma. Ce modèle appliqué à une configuration d’attaque directe de Fusion par Confinement Inertiel (FCI) montre que le CBET réduit le couplage laser-cible, réduit le facteur de convergence, et amplifie les modes basse fréquence de déformation de la capsule. Le modèle de génération d’électrons rapides par l’ILP non-linéaire modélise les propriétés des faisceaux d’électrons rapides, i.e. leur flux, énergie moyenne, dispersions angulaire et direction, à partir de l’intensité laser prédite par PCGO et à partir d’expressions simplifiées, basées sur des modèles théoriques et des lois d’échelles obtenues à l’aide de simulations cinétiques. La propagation et le dépôt d’énergie par les électrons rapides est décrite à partir d’une approximation de diffusion angulaire adaptée en deux dimensions, pour des faisceaux de profil transverse d’intensité Gaussien, de distribution d’énergie exponentielle et d’ouverture angulaire arbitraire. Ce modèle couplé rend compte de (i) la compétition pour l’énergie laser entre les différentes instabilités et avec l’absorption collisionnelle, (ii) le couplage entre l’ILP non-linéaire et la dynamique du plasma à travers les faisceaux d’électrons rapides, et(iii) la perte de couplage laser-plasma due à la diffusion Raman arrière. Les performances de ce modèle sont évaluées par comparaisons avec des expériences d’allumage par choc conduites sur les installations laser Omega et Pals. Ce modèle multi-échelle est ensuite utilisé pour interpréter plusieurs expériences. On trouve notamment que les électrons générés par l’ILP non-linéaire augmentent la vitesse du choc et la pression en aval de ce dernier, tout en réduisant sa force et la pression d’ablation. Une application à la phase fortement non-linéaire de l’allumage par choc en FCI suggère que ces électrons sont néfastes pour l’implosion de la capsule en ce qui concerne les cibles conventionnelles : ceux-ci causent une augmentation de la masse du point chaud et des pertes radiatives. Ce modèle peut être appliqué à la modélisation hydrodynamique des expériences laser-cible de physique des hautes densités d’énergie pour les régimes d’interaction pertinents pour les instabilités évoquées ci dessus. This manuscript presents a novel formulation of the Laser-Plasma Interaction (LPI) at hydrodynamical scales, that couples the plasma dynamics with linear and nonlinear LPI processes. The standard Ray Tracing model, based on Geometrical Optics, is not well suited for that purpose because it does not readily describe the laser intensity distribution in plasma. We propose an alternative model formulated for a Lagrangian hydrodynamic code. It is based on the ray-based Paraxial Complex Geometrical Optics (PCGO) that describes Gaussian optical beamlets. A method for modeling non-Gaussian laser beams smoothed by Phase Plates is presented, that allows to create intensity variations that reproduce the beam envelope, contrast and high-intensity statistics predicted by paraxial laser propagation codes. We propose inline reduced models for the non-linear laser-plasma interaction, in the case of the Cross-Beam Energy Transfer (CBET) and the generation of Hot Electrons (HE). The inline CBET model is validated against a time-dependent conventional paraxial electromagnetic wave propagation code, in a well-defined plasma configuration with density and velocity profiles corresponding to an inhomogeneous plasma. Good agreement is found past a transient period on the picosecond time scale, notably for the spatial distribution of density perturbations and laser intensities in the interaction region. Application of the model to a direct-drive Inertial Confinement Fusion (ICF) configuration shows that CBET significantly degrades the irradiation symmetry by amplifying low frequency modes and reducing the laser-capsule coupling efficiency, ultimately leading to large modulations of the shell areal density and lower convergence ratios. The LPI/HE model predicts the HE fluxes, temperatures, angular dispersion and direction from the laser intensity of PCGO beamlets from simplified expressions based on theoretical models and scaling laws obtained in kinetic simulations. The HE beams propagation and energy deposition in plasma is described in the angular scattering approximation, adapted to two-dimensional, transversally Gaussian, multigroup HE beams of arbitrary angular distribution. This model accounts for (i) competition for the laser energy between the various instabilities and with the linear collisional absorption, (ii) coupling between nonlinear LPIs and plasma dynamics via the high energy electron beams and(iii) loss of coupling due to backscattered Raman light. Its performance is confirmed by comparison with measurements of shock timing, laser absorption, HE fluxes and temperatures in experiments conducted on Omega and Pals laser facilities. This multiscale inline LPI-HE model is used to interpret several Shock Ignition experiments. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure. Applications to the high-intensity regime of shock ignition ICF suggest that HEs generated by the nonlinear LPI are nefarious to the capsule implosion in conventional target designs, as they lead to a dramatic increase in the hotspot mass and losses by Bremsstrahlung radiation. This model is readily applicable to hydrodynamic description of laser-target experiments of High Energy Density Physics, in the interaction regimes involving the above-mentioned non-linear LPI processes. Electronic Thesis or Dissertation Text en http://www.theses.fr/2015BORD0253/document Colaitis, Arnaud 2015-11-10 Bordeaux Tikhonchuk, Vladimir Nicolaï, Philippe Duchateau, Guillaume |