Système de gestion du stationnement dans un environnement dynamique et multi-objectifs
Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont é...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2014
|
Subjects: | |
Online Access: | http://www.theses.fr/2014VALE0035/document |
id |
ndltd-theses.fr-2014VALE0035 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Plus court chemin bi-Objectif Affectation bi-Objectif Parking intelligent Affectation dynamique Apprentissage Métaheuristique. Bi-Objective shortest path problem Bi-Objective assignment problem Smartparking Dynamic assignment problem Learning Metaheuristic. |
spellingShingle |
Plus court chemin bi-Objectif Affectation bi-Objectif Parking intelligent Affectation dynamique Apprentissage Métaheuristique. Bi-Objective shortest path problem Bi-Objective assignment problem Smartparking Dynamic assignment problem Learning Metaheuristic. Ratli, Mustapha Système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
description |
Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont énormes. L'objectif de cette thèse est de fournir des algorithmes efficaces et robustes afin que les conducteurs gagnent du temps et de l'argent et aussi augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un problème d'affectation multi-objectifs dans des environnements statique et dynamique. Tout d'abord, dans l'environnement statique, nous proposons de nouvelles heuristiques en deux phases pour calculer une approximation de l'ensemble des solutions efficaces pour un problème bi-objectif. Dans la première phase, nous générons l'ensemble des solutions supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous proposons quatre métaheuristiques pour générer une approximation des solutions non supportées. Les approches proposées sont testées sur le problème du plus court chemin bi-objectif et le problème d'affectation bi-objectif. Dans le contexte de l'environnement dynamique, nous proposons une formulation du problème sous forme d'un programme linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la satisfaction des conducteurs et l'intérêt du gestionnaire de parking. Deux approches sont proposées pour résoudre ce problème d'affectation dynamique avec ou sans phase d'apprentissage. Pour renforcer la phase d'apprentissage, un algorithme à estimation de distribution est proposé pour prévoir la demande future. Pour évaluer l'efficacité des algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en œuvre pilote a été menée dans le parking à l'Université de Valenciennes en utilisant une plateforme existante, appelée Context Aware Transportation Services (CATS), qui permet le déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d'une approche à l'autre en fonction du contexte. Enfin cette thèse s'inscrit dans le projet SYstem For Smart Road Applications ( SYFRA). === The parking problem is nowadays one of the major issues in urban transportation planning and traffic management research. In fact, the consequences of the lack of parking slots along with the inadequate management of these facilities are tremendous. The aim of this thesis is to provide efficient and robust algorithms in order to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments. First, for the static environment, we propose new two-phase heuristics to calculate an approximation of the set of efficient solutions for a bi-objective problem. In the first phase, we generate the supported efficient set with a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions. The proposed approaches are tested on the bi-objective shortest path problem and the biobjective assignment problem. For the dynamic environment, we propose a mixed integer linear programming formulation that is solved several times over a given horizon. The objective functions consist of a balance between the satisfaction of drivers and the interest of the parking managers. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to predict the future demand. In order to evaluate the effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot implementation has also been conducted in the parking of the University of Valenciennes, using an existing platform called framework for context aware transportation services, which allows dynamic deployment of services. This platform can dynamically switch from one approach to another depending on the context. This thesis is part of the project SYstem For Smart Road Applications (SYFRA). |
author2 |
Valenciennes |
author_facet |
Valenciennes Ratli, Mustapha |
author |
Ratli, Mustapha |
author_sort |
Ratli, Mustapha |
title |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
title_short |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
title_full |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
title_fullStr |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
title_full_unstemmed |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
title_sort |
système de gestion du stationnement dans un environnement dynamique et multi-objectifs |
publishDate |
2014 |
url |
http://www.theses.fr/2014VALE0035/document |
work_keys_str_mv |
AT ratlimustapha systemedegestiondustationnementdansunenvironnementdynamiqueetmultiobjectifs AT ratlimustapha parkingmanagementsysteminadynamicandmultiobjectiveenvironment |
_version_ |
1719308923890040832 |
spelling |
ndltd-theses.fr-2014VALE00352020-01-17T03:24:32Z Système de gestion du stationnement dans un environnement dynamique et multi-objectifs Parking management system in a dynamic and multi-objective environment Plus court chemin bi-Objectif Affectation bi-Objectif Parking intelligent Affectation dynamique Apprentissage Métaheuristique. Bi-Objective shortest path problem Bi-Objective assignment problem Smartparking Dynamic assignment problem Learning Metaheuristic. Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont énormes. L'objectif de cette thèse est de fournir des algorithmes efficaces et robustes afin que les conducteurs gagnent du temps et de l'argent et aussi augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un problème d'affectation multi-objectifs dans des environnements statique et dynamique. Tout d'abord, dans l'environnement statique, nous proposons de nouvelles heuristiques en deux phases pour calculer une approximation de l'ensemble des solutions efficaces pour un problème bi-objectif. Dans la première phase, nous générons l'ensemble des solutions supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous proposons quatre métaheuristiques pour générer une approximation des solutions non supportées. Les approches proposées sont testées sur le problème du plus court chemin bi-objectif et le problème d'affectation bi-objectif. Dans le contexte de l'environnement dynamique, nous proposons une formulation du problème sous forme d'un programme linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la satisfaction des conducteurs et l'intérêt du gestionnaire de parking. Deux approches sont proposées pour résoudre ce problème d'affectation dynamique avec ou sans phase d'apprentissage. Pour renforcer la phase d'apprentissage, un algorithme à estimation de distribution est proposé pour prévoir la demande future. Pour évaluer l'efficacité des algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en œuvre pilote a été menée dans le parking à l'Université de Valenciennes en utilisant une plateforme existante, appelée Context Aware Transportation Services (CATS), qui permet le déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d'une approche à l'autre en fonction du contexte. Enfin cette thèse s'inscrit dans le projet SYstem For Smart Road Applications ( SYFRA). The parking problem is nowadays one of the major issues in urban transportation planning and traffic management research. In fact, the consequences of the lack of parking slots along with the inadequate management of these facilities are tremendous. The aim of this thesis is to provide efficient and robust algorithms in order to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments. First, for the static environment, we propose new two-phase heuristics to calculate an approximation of the set of efficient solutions for a bi-objective problem. In the first phase, we generate the supported efficient set with a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions. The proposed approaches are tested on the bi-objective shortest path problem and the biobjective assignment problem. For the dynamic environment, we propose a mixed integer linear programming formulation that is solved several times over a given horizon. The objective functions consist of a balance between the satisfaction of drivers and the interest of the parking managers. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to predict the future demand. In order to evaluate the effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot implementation has also been conducted in the parking of the University of Valenciennes, using an existing platform called framework for context aware transportation services, which allows dynamic deployment of services. This platform can dynamically switch from one approach to another depending on the context. This thesis is part of the project SYstem For Smart Road Applications (SYFRA). Electronic Thesis or Dissertation Text en http://www.theses.fr/2014VALE0035/document Ratli, Mustapha 2014-12-12 Valenciennes Lecomte, Sylvain Hanafi, Saïd |