Summary: | Les travaux de cette thèse sont articulés autour du problème d’ordonnancement de tâches dans un type d’atelier de structure complexe peu étudié dans la littérature. Cet atelier est de composition hybride : chaque étage de l’atelier a une ou plusieurs machines. Les principales contraintes considérées sont le traitement par lots et la minimisation du retard total. Les méthodes de résolution de ce problème sont intégrées dans les systèmes d’aide à la décision du programme de recherche du Groupe SouffletEtant donné la structure complexe du type d’atelier considéré, nous avons décomposé ce dernier afin d’étudier plus particulièrement le problème d’ordonnancement sur machines parallèles identiques. Différentes méthodes de résolution sont testées. Les résultats sont analysés afin de proposer une classification d’instances et de méthodes de résolution. Les problèmes étudiés sont résolus de manière exacte et approchée. Différentes méthodes ont été testées : des recherches itératives, des algorithmes tabous, des méthodes évolutionnaires. Les conclusions de la résolution du problème d’ordonnancement des machines parallèles sont utilisées pour construire des méthodes à deux niveaux pour le problème complexe d’ordonnancement. Les résultats montrent que les algorithmes trouvent des solutions de bonne qualité pour le problème traité. De la même manière, de problématiques industrielles similaires sont traitées, dans l’objectif d’optimiser le fonctionnement du centre de recherche === This thesis considers a complex workshop scheduling problem, which is rarely studied to our knowledge. This workshop has a hybrid composition : one or several machines are available at each stage. Main considered constraints are batch processing and total tardiness minimization. Solution methods are embedded on the information system of research program of Soufflet Group. Given the complex structure of the workshop, it has been split in order to study the parallel machines scheduling problem individually. Different solution methods are developed. Obtained results are used to build a classification of instances and solution methods. To solve described problems, exact and approach solution methods are proposed. We have adapted iterated search, tabu search, genetic algorithms, … Findings from solving parallel machines scheduling problem are employed to develop a two levels solution method for the described flow shop problem. Results show the performance of developed algorithms to find good quality solutions for described scheduling problem. Similarly, industrial problems are considered, in order to optimize operational behavior of research center
|