Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions

Le crassier du site MetalEurop (Noyelles-Godault) a accueilli des scories de première fusion entre les années 1936 à 2003. Il est actuellement constitué de 4 millions de tonnes de ces matériaux générés par les deux procédés pyrométallurgiques les plus usités dans le monde pour la production du plomb...

Full description

Bibliographic Details
Main Author: Yin, Nang Htay
Other Authors: Paris Est
Language:en
Published: 2014
Subjects:
Online Access:http://www.theses.fr/2014PEST1125/document
id ndltd-theses.fr-2014PEST1125
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Scories métallurgiques
Métaux lourds
Bioaltération
Isotopie stable
Matallurgical slags
Heavy metals
Bioweathering
Stable istope

spellingShingle Scories métallurgiques
Métaux lourds
Bioaltération
Isotopie stable
Matallurgical slags
Heavy metals
Bioweathering
Stable istope

Yin, Nang Htay
Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
description Le crassier du site MetalEurop (Noyelles-Godault) a accueilli des scories de première fusion entre les années 1936 à 2003. Il est actuellement constitué de 4 millions de tonnes de ces matériaux générés par les deux procédés pyrométallurgiques les plus usités dans le monde pour la production du plomb et du zinc : le procédé Lead Blast Furnace (LBF) et le procédé Impérial Smelting Furnace (ISF). L'utilisation de ces scories en tant que matériau de substitution dans les ciments et dans les routes a été envisagée et a fait l'objet de recherches, mais présente des risques environnementaux, c'est-à-dire, essentiellement la dissémination de polluants (Pb et Zn) === Primary smelting slags, known as Lead Blast Furnace (LBF) and Imperial Smelting Furnace (ISF), were generated by the former pyrometallurgical industries located in Noyelles-Godault, Northern France. Following its closure in 2003, 4 million tons of primary slags have been landfilled as a heap in the vicinity of the Deûle River, near the industrial basin of Nord-Pas-de-Calais. These slag materials are often enriched in particular metals (Pb, Zn) that can be released into the environment through alteration processes and leaching. Many biological and chemical processes might take place within these tailings and thus affect significantly the slag weathering. Predicting the environmental impact of these wastes requires an understanding of the mineral-water interactions as well as the influence of the biological activities (the involvement of microorganisms). Thus, this research is designed to simulate the natural weathering of slag by simulating different weathering conditions with or without the involvement of the microorganisms as well as by varying several chemical parameters. Chemical weathering of both LBF and ISF slags was studied by as a function of pHs (4, 5.5, 7, 8.5 and 10) as well as under two atmospheres (open air and nitrogen). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. In addition, Zn dissolution was related to extremes zinc isotopic signatures in the leachate; heavier δ66Zn values at low pH than at high pH for both slags under open-air atmosphere. On the other hand, bioweathering of both slags was studied in the presence of a pure heterotrophic bacterial strain (Pseudomonas aeruginosa) in a bioreactor operated in batch conditon as well as in a semi-flow through reactor with intermittent leachate renewal conditions. P. aeruginosa is shown to play a significant role in slags weathering by enhancing the leaching and solubility of Zn and Pb. In addition, the cumulative bulk release of dissolved Fe, Si, Ca and Mg doubled in the presence of bacteria, probably due to the release of soluble complexing organic molecules (e.g. siderophores). Bacterial biomass served as the bioadsorbent for Pb, Fe and Zn as 70-80% of Pb and Fe, 40-60% of Zn released are attached to and immobilized by the bacterial biomass. Oxides, hydroxides and carbonates were predicted as secondary phases during chemical weathering of slags whereas carbonates and phosphates were dominant phases during bioweathering. These predictions were in agreement with the observations by Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDS), Transmission Electron Microscopy (TEM) analysis, and X-ray Photoelectron Spectroscopy (XPS) analysis
author2 Paris Est
author_facet Paris Est
Yin, Nang Htay
author Yin, Nang Htay
author_sort Yin, Nang Htay
title Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
title_short Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
title_full Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
title_fullStr Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
title_full_unstemmed Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
title_sort weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions
publishDate 2014
url http://www.theses.fr/2014PEST1125/document
work_keys_str_mv AT yinnanghtay weatheringofmetallurgicalslagsacomprehensivestudyontheimportanceofchemicalandbiologicalcontributions
AT yinnanghtay lalterationdesscoriesmetallurgiquesuneetudeapprofondiesurlimportancedescontributionschimiquesetbiologiques
_version_ 1718484091451473920
spelling ndltd-theses.fr-2014PEST11252017-06-30T04:47:08Z Weathering of metallurgical slags : a comprehensive study on the importance of chemical and biological contributions L'altération des scories métallurgiques : une étude approfondie sur l'importance des contributions chimiques et biologiques Scories métallurgiques Métaux lourds Bioaltération Isotopie stable Matallurgical slags Heavy metals Bioweathering Stable istope Le crassier du site MetalEurop (Noyelles-Godault) a accueilli des scories de première fusion entre les années 1936 à 2003. Il est actuellement constitué de 4 millions de tonnes de ces matériaux générés par les deux procédés pyrométallurgiques les plus usités dans le monde pour la production du plomb et du zinc : le procédé Lead Blast Furnace (LBF) et le procédé Impérial Smelting Furnace (ISF). L'utilisation de ces scories en tant que matériau de substitution dans les ciments et dans les routes a été envisagée et a fait l'objet de recherches, mais présente des risques environnementaux, c'est-à-dire, essentiellement la dissémination de polluants (Pb et Zn) Primary smelting slags, known as Lead Blast Furnace (LBF) and Imperial Smelting Furnace (ISF), were generated by the former pyrometallurgical industries located in Noyelles-Godault, Northern France. Following its closure in 2003, 4 million tons of primary slags have been landfilled as a heap in the vicinity of the Deûle River, near the industrial basin of Nord-Pas-de-Calais. These slag materials are often enriched in particular metals (Pb, Zn) that can be released into the environment through alteration processes and leaching. Many biological and chemical processes might take place within these tailings and thus affect significantly the slag weathering. Predicting the environmental impact of these wastes requires an understanding of the mineral-water interactions as well as the influence of the biological activities (the involvement of microorganisms). Thus, this research is designed to simulate the natural weathering of slag by simulating different weathering conditions with or without the involvement of the microorganisms as well as by varying several chemical parameters. Chemical weathering of both LBF and ISF slags was studied by as a function of pHs (4, 5.5, 7, 8.5 and 10) as well as under two atmospheres (open air and nitrogen). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. In addition, Zn dissolution was related to extremes zinc isotopic signatures in the leachate; heavier δ66Zn values at low pH than at high pH for both slags under open-air atmosphere. On the other hand, bioweathering of both slags was studied in the presence of a pure heterotrophic bacterial strain (Pseudomonas aeruginosa) in a bioreactor operated in batch conditon as well as in a semi-flow through reactor with intermittent leachate renewal conditions. P. aeruginosa is shown to play a significant role in slags weathering by enhancing the leaching and solubility of Zn and Pb. In addition, the cumulative bulk release of dissolved Fe, Si, Ca and Mg doubled in the presence of bacteria, probably due to the release of soluble complexing organic molecules (e.g. siderophores). Bacterial biomass served as the bioadsorbent for Pb, Fe and Zn as 70-80% of Pb and Fe, 40-60% of Zn released are attached to and immobilized by the bacterial biomass. Oxides, hydroxides and carbonates were predicted as secondary phases during chemical weathering of slags whereas carbonates and phosphates were dominant phases during bioweathering. These predictions were in agreement with the observations by Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDS), Transmission Electron Microscopy (TEM) analysis, and X-ray Photoelectron Spectroscopy (XPS) analysis Electronic Thesis or Dissertation Text en http://www.theses.fr/2014PEST1125/document Yin, Nang Htay 2014-12-02 Paris Est Erasmus Mundus ETeCoS3 Van Hullebusch, Eric