Divers problèmes théoriques et numériques liés à la simulation de fluides non newtoniens

Le chapitre 1 introduit les modèles et donne les principaux résultats obtenus. Dans le chapitre 2, on présente des simulations numériques d'un modèle macroscopique en deux dimensions. La méthode de discrétisation par éléments finis utilisée est décrite. Pour le cas test de l'écoulement aut...

Full description

Bibliographic Details
Main Author: Benoit, David
Other Authors: Paris Est
Language:fr
en
Published: 2014
Subjects:
Online Access:http://www.theses.fr/2014PEST1004/document
Description
Summary:Le chapitre 1 introduit les modèles et donne les principaux résultats obtenus. Dans le chapitre 2, on présente des simulations numériques d'un modèle macroscopique en deux dimensions. La méthode de discrétisation par éléments finis utilisée est décrite. Pour le cas test de l'écoulement autour d'un cylindre, les phénomènes en jeu dans les fluides vieillissants sont observés. Le chapitre 3 concerne l'étude mathématique de la version unidimensionnelle du système d'équations aux dérivées partielles utilisé pour les simulations. On montre que le problème est bien posé et on examine le comportement en temps long de la solution. Dans le dernier chapitre, des équations macroscopiques sont dérivées à partir d'une équation mésoscopique. L'analyse mathématique de cette équation mésoscopique est également menée === This thesis is devoted to the modelling, the mathematical analysis and the simulation of non-Newtonian fluids. Some fluids in an intermediate liquid-solid phase are particularly considered: aging fluids. Modelling scales are macroscopic and mesoscopic. In Chapter 1, we introduce the models and give the main results obtained. In Chapter 2, we present numerical simulations of a macroscopic two-dimensional model. The finite element method used for discretization is described. For the flow past a cylinder test-case, phenomena at play in aging fluids are observed. The Chapter 3 contains a mathematical analysis of the one-dimensional version of the system of partial differential equations used for the simulations. We show well-posedness and investigate the longtime behaviour of the solution. In the last chapter, macroscopic equations are derived from a mesoscopic equation. The mathematical analysis of this mesoscopic equation is also carried out