Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP)
Avec le développement des énergies intermittentes et la raréfaction des énergies fossiles, le sujet du stockage de l’énergie prend de plus en plus d’ampleur. Une des voies étudiée est le stockage thermique par utilisation de matériaux à changement de phase (MCP). Cette voie est en outre développée p...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2014
|
Subjects: | |
Online Access: | http://www.theses.fr/2014PAUU3014/document |
id |
ndltd-theses.fr-2014PAUU3014 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Matériaux à changement de phase Fusion Caractérisation Modélisation Méthode inverse Validation expérimentale Phase change materials Melting Characterization Modelization Inverse method Experimental validation |
spellingShingle |
Matériaux à changement de phase Fusion Caractérisation Modélisation Méthode inverse Validation expérimentale Phase change materials Melting Characterization Modelization Inverse method Experimental validation Maréchal, William Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) |
description |
Avec le développement des énergies intermittentes et la raréfaction des énergies fossiles, le sujet du stockage de l’énergie prend de plus en plus d’ampleur. Une des voies étudiée est le stockage thermique par utilisation de matériaux à changement de phase (MCP). Cette voie est en outre développée pour améliorer l’inertie thermique dans le secteur du bâtiment. Pour utiliser au mieux ces matériaux il est nécessaire de pouvoir prévoir leur comportement énergétique. Cela nécessite une connaissance précise des propriétés thermophysiques, et en premier lieu de la fonction enthalpie massique . Actuellement, il est souvent proposé d'approximer cette enthalpie par l'intégration directe des thermogrammes de la calorimétrie utilisant notamment la notion de capacité calorifique "équivalente". Cette approche est cependant fausse car le thermogramme n’est qu'une représentation en fonction du temps de phénomènes complexes faisant intervenir non seulement les propriétés énergétique du matériaux mais également les transferts thermiques au sein de la cellule du calorimètre. Il en résulte, par exemple, que la forme des thermogrammes, et donc l’enthalpie apparente, dépend de la vitesse de réchauffement et de la masse de l'échantillon ce qui n'est pas le cas de l'enthalpie des MCP qui ne dépend, à pression fixe, que de la température ou de la concentration (pour les solutions). On propose de comparer la sortie d’un modèle numérique direct avec des thermogrammes expérimentaux. L’objectif principal de cette thèse est alors d’utiliser ce modèle dans le cadre d’une méthode inverse permettant l’identification des paramètres de l’équation d’état permettant alors de calculer l’enthapie massique . Dans un premier temps, il est donc présenté le détail d'un modèle 2D dit enthalpique qui néglige la convection, validé par l'expérience, permettant de reconstituer les thermogrammes de corps purs ou de solutions binaires dont les enthalpies sont connues. Il en est déduit une étude de l'influence des différents paramètres ( , , , ...) sur la forme des thermogrammes pour en déduire leurs sensibilités. Une réduction de ce modèle est ensuite effectuée pour réduire le temps de calcul du modèle direct en vue de l’utilisation dans une méthode inverse. Cette dernière est décrite ainsi que les algorithmes d’optimisation correspondants (de Levenberg-Marquardt, génétique ou du simplexe qui s'est avéré le plus rapide) dans un second temps. Nous appliquerons ensuite cet algorithme pour identifier, à partir d'expériences, la fonction enthalpie de corps purs ou de solutions binaires. Les résultats obtenus montrent qu’il est possible d’identifier une fonction independante de la vitesse de réchauffement et de la masse, ce qui valide la méthode. Une analyse des différentes sources d’erreurs dans le processus d’identification et leurs influences sur le résultat permet d’évaluer la qualité de la fonction enthalpie que l’on identifie. Enfin, cette même approche a été utilisée pour analyser une expérience réalisée sur un échantillon d’un matériau composite utilisé dans le bâtiment (ciment avec inclusion de MCP micro-encapsulé). Dans ce cas encore, nos méthodes permettent une caractérisation énergétique pertinente. === With the development of intermittent sources of energy and the depletion of fossil fuels, the subject of energy storage is becoming an important topic. One of the studied options is tthe latent hermal storage using of phase change materials (PCM). One application for this type of energy storage is to improve the thermal insulation in buildings. To make the best use of these materials it is necessary to be able to predict their energy behavior. This requires a precise knowledge of their thermophysical properties, first of all of the specific enthalpy function of the material . Currently, it is often suggested to approximate the enthalpy by the direct integration of the thermograms obtained through calorimetry experiments (notion of "equivalent" calorific capacity). This approach is false because thermograms are only a time related representation of complex phenomena where thermal transfers arise in the cell of the calorimeter acting with the thermophysical properties. As a result, for example, the shape of thermograms depends on the heating rate and on the mass of the sample, which is not the case for the enthalpy of the PCM, which depends, at constant pressure, only on the temperature or on the concentration (for the solutions). We propose to compare the results given by a of a numerical direct model with experimental thermograms. The main objective in this thesis is then to use this direct model in an inverse method in order to identify the parameters of the equation of state, which enables us to calculate the specific enthalpy . First of all, the detail of an enthalpy model is presented, and then validated by comparison with experiments, allowing us to reconstruct the thermograms of pure substances or of salt solutions, of which the enthalpies are known. A study of the influence of the various parameters ( , , , .,..) on the shape of thermograms is also undertaken in order to deduce their sensibilities. A reduced model is then developed in order to reduce the calculating time of the direct model. This optimized model allows the use of inverse methods with acceptable durations. Several inverses algorithms are then presented: Levenberg-Marquardt, evolutionary and Simplex which has proved to be the fastest). We shall then apply this algorithm to identify, from calorimetric experiments, the enthalpy function of pure substances or of salt solutions. The results that we obtain show that it is possible to identify a function independent of the heating rate and of the mass, which validates the method. An analysis of the various sources of errors in the identification process and of their influences on the result allows us to estimate the quality of the enthalpy function that we identify. |
author2 |
Pau |
author_facet |
Pau Maréchal, William |
author |
Maréchal, William |
author_sort |
Maréchal, William |
title |
Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) |
title_short |
Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) |
title_full |
Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) |
title_fullStr |
Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) |
title_full_unstemmed |
Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) |
title_sort |
utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (mcp) |
publishDate |
2014 |
url |
http://www.theses.fr/2014PAUU3014/document |
work_keys_str_mv |
AT marechalwilliam utilisationdemethodesinversespourlacaracterisationdemateriauxachangementdephasemcp AT marechalwilliam useofinversemethodsforthecharacterizationofphasechangematerialspcm |
_version_ |
1719047598084456448 |
spelling |
ndltd-theses.fr-2014PAUU30142019-05-09T15:56:38Z Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) Use of inverse methods for the characterization of phase change materials (PCM) Matériaux à changement de phase Fusion Caractérisation Modélisation Méthode inverse Validation expérimentale Phase change materials Melting Characterization Modelization Inverse method Experimental validation Avec le développement des énergies intermittentes et la raréfaction des énergies fossiles, le sujet du stockage de l’énergie prend de plus en plus d’ampleur. Une des voies étudiée est le stockage thermique par utilisation de matériaux à changement de phase (MCP). Cette voie est en outre développée pour améliorer l’inertie thermique dans le secteur du bâtiment. Pour utiliser au mieux ces matériaux il est nécessaire de pouvoir prévoir leur comportement énergétique. Cela nécessite une connaissance précise des propriétés thermophysiques, et en premier lieu de la fonction enthalpie massique . Actuellement, il est souvent proposé d'approximer cette enthalpie par l'intégration directe des thermogrammes de la calorimétrie utilisant notamment la notion de capacité calorifique "équivalente". Cette approche est cependant fausse car le thermogramme n’est qu'une représentation en fonction du temps de phénomènes complexes faisant intervenir non seulement les propriétés énergétique du matériaux mais également les transferts thermiques au sein de la cellule du calorimètre. Il en résulte, par exemple, que la forme des thermogrammes, et donc l’enthalpie apparente, dépend de la vitesse de réchauffement et de la masse de l'échantillon ce qui n'est pas le cas de l'enthalpie des MCP qui ne dépend, à pression fixe, que de la température ou de la concentration (pour les solutions). On propose de comparer la sortie d’un modèle numérique direct avec des thermogrammes expérimentaux. L’objectif principal de cette thèse est alors d’utiliser ce modèle dans le cadre d’une méthode inverse permettant l’identification des paramètres de l’équation d’état permettant alors de calculer l’enthapie massique . Dans un premier temps, il est donc présenté le détail d'un modèle 2D dit enthalpique qui néglige la convection, validé par l'expérience, permettant de reconstituer les thermogrammes de corps purs ou de solutions binaires dont les enthalpies sont connues. Il en est déduit une étude de l'influence des différents paramètres ( , , , ...) sur la forme des thermogrammes pour en déduire leurs sensibilités. Une réduction de ce modèle est ensuite effectuée pour réduire le temps de calcul du modèle direct en vue de l’utilisation dans une méthode inverse. Cette dernière est décrite ainsi que les algorithmes d’optimisation correspondants (de Levenberg-Marquardt, génétique ou du simplexe qui s'est avéré le plus rapide) dans un second temps. Nous appliquerons ensuite cet algorithme pour identifier, à partir d'expériences, la fonction enthalpie de corps purs ou de solutions binaires. Les résultats obtenus montrent qu’il est possible d’identifier une fonction independante de la vitesse de réchauffement et de la masse, ce qui valide la méthode. Une analyse des différentes sources d’erreurs dans le processus d’identification et leurs influences sur le résultat permet d’évaluer la qualité de la fonction enthalpie que l’on identifie. Enfin, cette même approche a été utilisée pour analyser une expérience réalisée sur un échantillon d’un matériau composite utilisé dans le bâtiment (ciment avec inclusion de MCP micro-encapsulé). Dans ce cas encore, nos méthodes permettent une caractérisation énergétique pertinente. With the development of intermittent sources of energy and the depletion of fossil fuels, the subject of energy storage is becoming an important topic. One of the studied options is tthe latent hermal storage using of phase change materials (PCM). One application for this type of energy storage is to improve the thermal insulation in buildings. To make the best use of these materials it is necessary to be able to predict their energy behavior. This requires a precise knowledge of their thermophysical properties, first of all of the specific enthalpy function of the material . Currently, it is often suggested to approximate the enthalpy by the direct integration of the thermograms obtained through calorimetry experiments (notion of "equivalent" calorific capacity). This approach is false because thermograms are only a time related representation of complex phenomena where thermal transfers arise in the cell of the calorimeter acting with the thermophysical properties. As a result, for example, the shape of thermograms depends on the heating rate and on the mass of the sample, which is not the case for the enthalpy of the PCM, which depends, at constant pressure, only on the temperature or on the concentration (for the solutions). We propose to compare the results given by a of a numerical direct model with experimental thermograms. The main objective in this thesis is then to use this direct model in an inverse method in order to identify the parameters of the equation of state, which enables us to calculate the specific enthalpy . First of all, the detail of an enthalpy model is presented, and then validated by comparison with experiments, allowing us to reconstruct the thermograms of pure substances or of salt solutions, of which the enthalpies are known. A study of the influence of the various parameters ( , , , .,..) on the shape of thermograms is also undertaken in order to deduce their sensibilities. A reduced model is then developed in order to reduce the calculating time of the direct model. This optimized model allows the use of inverse methods with acceptable durations. Several inverses algorithms are then presented: Levenberg-Marquardt, evolutionary and Simplex which has proved to be the fastest). We shall then apply this algorithm to identify, from calorimetric experiments, the enthalpy function of pure substances or of salt solutions. The results that we obtain show that it is possible to identify a function independent of the heating rate and of the mass, which validates the method. An analysis of the various sources of errors in the identification process and of their influences on the result allows us to estimate the quality of the enthalpy function that we identify. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2014PAUU3014/document Maréchal, William 2014-04-24 Pau Dumas, Jean-Pierre Gibout, Stéphane |