Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire
Les immunoglobulines ne sont pas les seules protéines capables de reconnaissance spécifique. D’autres systèmes d’immunité adaptative existent et beaucoup d’autres protéines peuvent aussi générer des interactions spécifiques de hautes affinités. Ce sont des ossatures/squelettes protéiques intéressant...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2014
|
Subjects: | |
Online Access: | http://www.theses.fr/2014PA114842 |
id |
ndltd-theses.fr-2014PA114842 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
AlphaRep Ossature protéique Évolution dirigée Ingénierie des protéines Interaction protéine-protéine Outil de reconnaissance moléculaire AlphaRep Protein scaffold Directed evolution Protein engineering Protein-protein interaction Tool for molecular recognition |
spellingShingle |
AlphaRep Ossature protéique Évolution dirigée Ingénierie des protéines Interaction protéine-protéine Outil de reconnaissance moléculaire AlphaRep Protein scaffold Directed evolution Protein engineering Protein-protein interaction Tool for molecular recognition Chevrel, Anne Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
description |
Les immunoglobulines ne sont pas les seules protéines capables de reconnaissance spécifique. D’autres systèmes d’immunité adaptative existent et beaucoup d’autres protéines peuvent aussi générer des interactions spécifiques de hautes affinités. Ce sont des ossatures/squelettes protéiques intéressants pour concevoir de nouveaux interacteurs.Une nouvelle famille de protéines synthétiques, appelées AlphaReps, basée sur la famille des protéines à HEAT repeat contenant un motif structural répété en double hélice alpha, a été construite au laboratoire. Le motif répété, d’abord identifié chez une archée thermostable, a été idéalisé en concevant une séquence consensus, grâce à l’alignement de séquences de motifs naturels. Une banque de protéines a alors été construite à partir de ce motif. Toutes les protéines de la banque ont une structure générale similaire mais elles diffèrent par le nombre de motifs insérés et par les cinq résidus hautement diversifiés situés sur la face externe de la seconde hélice de chacun des motifs. Ces nouvelles protéines sont exprimées très efficacement chez E. Coli, solubles, sans pont disulfure et très stables (50-100 mg. L-1 de culture, Tm > 70°C).Le travail de thèse présenté dans ce manuscrit s’intéresse à l’utilisation de ces nouvelles protéines synthétiques comme outils de reconnaissance moléculaire. Pour cela, plusieurs applications ont été développées. Dans la première partie, à l’aide de la technique du phage display, des interacteurs de hautes affinités pour la Green Fluorescent Protein ont pu être isolés au sein de la banque. Les interactions des protéines partenaires ont été caractérisées par la détermination des constantes d’affinité, ainsi que la résolution des structures cristallographiques de deux complexes contenant une AlphaRep spécifique et la GFP. Avec cette cible modèle, la possibilité d’utiliser les AlphaReps sélectionnées à l’intérieur des cellules eucaryotes vivantes pour reconnaître spécifiquement une cible protéique dans un milieu complexe a aussi été démontrée. L’utilisation des AlphaReps comme outils de diagnostique a été développée pour la détection de la cible membranaire FSHr (récepteur de l’hormone folliculo-stimulante), protéine surexprimée dans de nombreuses tumeurs. Ce projet a permis d’expérimenter des approches de sélections sur cellules entières, soulignant les progrès restant encore à accomplir pour la sélection contre des cibles plus complexes.La seconde partie de ce travail s’est intéressée à l’ingénierie et à l’évolution des AlphaReps. Ainsi, l’insertion de résidus variables sur le dernier motif (C-cap) de protéines de la banque a pu être validé. Une approche innovante de shuffling modulaire, adaptée à l’ossature AlphaRep a permis de cerner les limites de cette méthode et les améliorations à apporter pour être en mesure d’augmenter l’affinité d’interacteurs présélectionnés. La banque d’AlphaReps de phage display a également été transférée dans un vecteur de PCA (Protein Fragment Complementation Assay) utilisant la protéine scindée DHFR (Dihydrofolate Reductase) comme protéine rapportrice. Cela a permis de sélectionner des AlphaReps spécifiques pour des cibles non exploitables en phage display. L’utilisation de la cis-fusion entre une AlphaRep et sa cible, combinée à la technique de PCA, s’est révélée très efficace pour la sélection et la cristallisation de protéines réfractaires telles que la protéine ComD, ici présentée comme preuve de la réussite de cette approche.Les AlphaReps sont donc des protéines artificielles, parmi lesquelles des interacteurs spécifiques peuvent être isolés pour des cibles variées. Un large panel d’applications peut être envisagé comme le développement d’outils d’aide à la cristallogenèse ou celui d’outils de reconnaissance moléculaire in vivo. === Immunoglobulin fold is not the only basis for specific recognition proteins. Other adaptive immunity systems exist and many other proteins are also able to mediate specific high-affinity interactions. These are interesting scaffolds to generate alternative binding molecules.A new family of artificial proteins, named AlphaRep, based on HEAT repeat proteins containing an alpha-helical repeated motif, was designed in the laboratory. The repeated motif, first identified in a thermostable archae protein of unknown function was refined and idealized using a consensus design strategy. A library of artificial proteins based on this design was then constructed. All proteins from this library share the same general fold but differ both in the number of repeats and in a set of five highly randomized positions per repeat. The randomized side chains are located on the outside surface of the second helix. Sequences from this library are efficiently expressed as soluble, folded and very stable proteins (50-100 mg. L-1 of culture, Tm > 70°C).The work presented in this manuscript is focused on the use of those new synthetic proteins as molecular recognition tools. Then, different applications have been developed.In a first part, binders with high affinity for the green fluorescent protein were selected by phage display. Complexes were characterized. Affinity between partners was measured and structures of two of those complexes containing a specific AlphaRep and the protein target were solved by X-ray crystallography. Thanks to this model target, it was demonstrated that AlphaReps could be used in living cells for the specific recognition of the protein they have been selected for. AlphaReps have also been developed as a diagnostic tool to detect the membrane protein FSHr (Follicle stimulating Hormone receptor), shown to be overexpressed in various tumors. In this project, selections on entire cells have been performed, showing the limit of the selections approaches with complex targets.The second part of this work focused on engineering and evolutions of AlphaRep proteins. The insertion of randomized residues at specific positions in the last motif (C-cap) was validated. An innovative approach of modular shuffling, adjusted to the AlphaRep scaffold, was assessed. Limitations of this approach to perform affinity maturation of AlphaReps could then be understood. Finally, the AlphaRep Library was transferred to a PCA (Protein Fragment Complementation Assay) vector using the split DHFR (Dihydrofolate Reductase) as reporter protein. With this new selection system, specific Alphareps could be selected for protein targets not suitable for phage display selection. A cis-fusion strategy was employed to express the AlphaRep fused to its partner in order to increase the stability and solubility of the target as well as helping for its crystallogenesis. This approach, combined with the PCA selection, was successful to obtain crystals of the ComD protein (unstable protein), shown here as an example of success for this new method.AlphaReps are thus artificial proteins, among which specific binders can be isolated for various targets, showing a strong potential for a large range of applications from crystallogenesis helpers to in vivo molecular recognition tools. |
author2 |
Paris 11 |
author_facet |
Paris 11 Chevrel, Anne |
author |
Chevrel, Anne |
author_sort |
Chevrel, Anne |
title |
Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
title_short |
Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
title_full |
Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
title_fullStr |
Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
title_full_unstemmed |
Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
title_sort |
ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire |
publishDate |
2014 |
url |
http://www.theses.fr/2014PA114842 |
work_keys_str_mv |
AT chevrelanne ingenierieduneossatureamotifsstructurauxrepetesparevolutiondirigeedeveloppementsetapplicationsdunnouveloutildereconnaissancemoleculaire AT chevrelanne engineeringofarepeatproteinscaffoldbydirectedevolutiondevelopmentsandapplicationsofanewtoolformolecularrecognition |
_version_ |
1719017772001787904 |
spelling |
ndltd-theses.fr-2014PA1148422019-04-12T03:58:55Z Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire Engineering of a repeat protein scaffold by directed evolution : Developments and Applications of a new tool for molecular recognition AlphaRep Ossature protéique Évolution dirigée Ingénierie des protéines Interaction protéine-protéine Outil de reconnaissance moléculaire AlphaRep Protein scaffold Directed evolution Protein engineering Protein-protein interaction Tool for molecular recognition Les immunoglobulines ne sont pas les seules protéines capables de reconnaissance spécifique. D’autres systèmes d’immunité adaptative existent et beaucoup d’autres protéines peuvent aussi générer des interactions spécifiques de hautes affinités. Ce sont des ossatures/squelettes protéiques intéressants pour concevoir de nouveaux interacteurs.Une nouvelle famille de protéines synthétiques, appelées AlphaReps, basée sur la famille des protéines à HEAT repeat contenant un motif structural répété en double hélice alpha, a été construite au laboratoire. Le motif répété, d’abord identifié chez une archée thermostable, a été idéalisé en concevant une séquence consensus, grâce à l’alignement de séquences de motifs naturels. Une banque de protéines a alors été construite à partir de ce motif. Toutes les protéines de la banque ont une structure générale similaire mais elles diffèrent par le nombre de motifs insérés et par les cinq résidus hautement diversifiés situés sur la face externe de la seconde hélice de chacun des motifs. Ces nouvelles protéines sont exprimées très efficacement chez E. Coli, solubles, sans pont disulfure et très stables (50-100 mg. L-1 de culture, Tm > 70°C).Le travail de thèse présenté dans ce manuscrit s’intéresse à l’utilisation de ces nouvelles protéines synthétiques comme outils de reconnaissance moléculaire. Pour cela, plusieurs applications ont été développées. Dans la première partie, à l’aide de la technique du phage display, des interacteurs de hautes affinités pour la Green Fluorescent Protein ont pu être isolés au sein de la banque. Les interactions des protéines partenaires ont été caractérisées par la détermination des constantes d’affinité, ainsi que la résolution des structures cristallographiques de deux complexes contenant une AlphaRep spécifique et la GFP. Avec cette cible modèle, la possibilité d’utiliser les AlphaReps sélectionnées à l’intérieur des cellules eucaryotes vivantes pour reconnaître spécifiquement une cible protéique dans un milieu complexe a aussi été démontrée. L’utilisation des AlphaReps comme outils de diagnostique a été développée pour la détection de la cible membranaire FSHr (récepteur de l’hormone folliculo-stimulante), protéine surexprimée dans de nombreuses tumeurs. Ce projet a permis d’expérimenter des approches de sélections sur cellules entières, soulignant les progrès restant encore à accomplir pour la sélection contre des cibles plus complexes.La seconde partie de ce travail s’est intéressée à l’ingénierie et à l’évolution des AlphaReps. Ainsi, l’insertion de résidus variables sur le dernier motif (C-cap) de protéines de la banque a pu être validé. Une approche innovante de shuffling modulaire, adaptée à l’ossature AlphaRep a permis de cerner les limites de cette méthode et les améliorations à apporter pour être en mesure d’augmenter l’affinité d’interacteurs présélectionnés. La banque d’AlphaReps de phage display a également été transférée dans un vecteur de PCA (Protein Fragment Complementation Assay) utilisant la protéine scindée DHFR (Dihydrofolate Reductase) comme protéine rapportrice. Cela a permis de sélectionner des AlphaReps spécifiques pour des cibles non exploitables en phage display. L’utilisation de la cis-fusion entre une AlphaRep et sa cible, combinée à la technique de PCA, s’est révélée très efficace pour la sélection et la cristallisation de protéines réfractaires telles que la protéine ComD, ici présentée comme preuve de la réussite de cette approche.Les AlphaReps sont donc des protéines artificielles, parmi lesquelles des interacteurs spécifiques peuvent être isolés pour des cibles variées. Un large panel d’applications peut être envisagé comme le développement d’outils d’aide à la cristallogenèse ou celui d’outils de reconnaissance moléculaire in vivo. Immunoglobulin fold is not the only basis for specific recognition proteins. Other adaptive immunity systems exist and many other proteins are also able to mediate specific high-affinity interactions. These are interesting scaffolds to generate alternative binding molecules.A new family of artificial proteins, named AlphaRep, based on HEAT repeat proteins containing an alpha-helical repeated motif, was designed in the laboratory. The repeated motif, first identified in a thermostable archae protein of unknown function was refined and idealized using a consensus design strategy. A library of artificial proteins based on this design was then constructed. All proteins from this library share the same general fold but differ both in the number of repeats and in a set of five highly randomized positions per repeat. The randomized side chains are located on the outside surface of the second helix. Sequences from this library are efficiently expressed as soluble, folded and very stable proteins (50-100 mg. L-1 of culture, Tm > 70°C).The work presented in this manuscript is focused on the use of those new synthetic proteins as molecular recognition tools. Then, different applications have been developed.In a first part, binders with high affinity for the green fluorescent protein were selected by phage display. Complexes were characterized. Affinity between partners was measured and structures of two of those complexes containing a specific AlphaRep and the protein target were solved by X-ray crystallography. Thanks to this model target, it was demonstrated that AlphaReps could be used in living cells for the specific recognition of the protein they have been selected for. AlphaReps have also been developed as a diagnostic tool to detect the membrane protein FSHr (Follicle stimulating Hormone receptor), shown to be overexpressed in various tumors. In this project, selections on entire cells have been performed, showing the limit of the selections approaches with complex targets.The second part of this work focused on engineering and evolutions of AlphaRep proteins. The insertion of randomized residues at specific positions in the last motif (C-cap) was validated. An innovative approach of modular shuffling, adjusted to the AlphaRep scaffold, was assessed. Limitations of this approach to perform affinity maturation of AlphaReps could then be understood. Finally, the AlphaRep Library was transferred to a PCA (Protein Fragment Complementation Assay) vector using the split DHFR (Dihydrofolate Reductase) as reporter protein. With this new selection system, specific Alphareps could be selected for protein targets not suitable for phage display selection. A cis-fusion strategy was employed to express the AlphaRep fused to its partner in order to increase the stability and solubility of the target as well as helping for its crystallogenesis. This approach, combined with the PCA selection, was successful to obtain crystals of the ComD protein (unstable protein), shown here as an example of success for this new method.AlphaReps are thus artificial proteins, among which specific binders can be isolated for various targets, showing a strong potential for a large range of applications from crystallogenesis helpers to in vivo molecular recognition tools. Electronic Thesis or Dissertation Text Image StillImage fr http://www.theses.fr/2014PA114842 Chevrel, Anne 2014-11-28 Paris 11 Minard, Philippe |