Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology

Cette thèse de doctorat est consacrée à l'étude des problèmes directe et inverse en électrophysiologie cardiaque. Comme les équations qui décrivent l'activité électrique du coeur peuvent être très couteuses en temps de calcul, une attention particulière est apportée aux méthodes d'ord...

Full description

Bibliographic Details
Main Author: Schenone, Elisa
Other Authors: Paris 6
Language:en
Published: 2014
Subjects:
510
Online Access:http://www.theses.fr/2014PA066447/document
Description
Summary:Cette thèse de doctorat est consacrée à l'étude des problèmes directe et inverse en électrophysiologie cardiaque. Comme les équations qui décrivent l'activité électrique du coeur peuvent être très couteuses en temps de calcul, une attention particulière est apportée aux méthodes d'ordre réduit et à leur applications aux modèles de l'électrophysiologie.Dans un premier temps, nous introduisons les modèles mathématiques et numériques de l'électrophysiologie cardiaque. Ces modèles nous permettent de réaliser des simulations numériques que nous validons à l'aide de plusieurs critères qualitatifs et quantitatifs trouvés dans la littérature médicale. Comme notre modèle prend en compte les oreillettes et les ventricules, nous sommes capables de reproduire des cycles complets d'électrocardiogrammes (ECG) à la fois dans des conditions saines et dans des cas pathologiques.Ensuite, plusieurs méthodes d'ordre réduit sont étudiées pour la résolution des équations de l'électrophysiologie. La méthode Proper Orthogonal Decomposition (POD) est appliquée pour la discrétisation des équations de l'électrophysiologie dans plusieurs configurations, comme par exemple la simulation d'un infarctus du myocarde. De plus, cette méthode est utilisée pour résoudre quelques problèmes d'identification de paramètres comme localiser un infarctus à partir de mesures d'un électrocardiogramme ou simuler une courbe de restitution. Pour contourner les limitations de la POD, une nouvelle méthode basée sur des couples de Lax approchés (Approximated Lax Pairs, ALP) est utilisée. Cette méthode est appliquée aux problèmes directe et inverse. Pour finir, un nouvel algorithme, basé sur les méthodes ALP et l'interpolation empirique discrète, est proposé. Cette nouvelle approche améliore significativement l'efficacité de l'algorithme original ALP et nous permet de considérer des modèles plus complexes utilisés en électrophysiologie cardiaque. === This PhD thesis is dedicated to the investigation of the forward and the inverse problem of cardiac electrophysiology. Since the equations that describe the electrical activity of the heart can be very demanding from a computational point of view, a particular attention is paid to the reduced order methods and to their application to the electrophysiology models. First, we introduce the mathematical and numerical models of electrophysiology and we implement them to provide for simulations that are validated against various qualitative and quantitative criteria found in the medical literature. Since our model takes into account atria and ventricles, we are able to reproduce full cycle Electrocardiograms (ECG) in healthy configurations and also in the case of several pathologies. Then, several reduced order methods are investigated for the resolution of the electrophysiology equations. The Proper orthogonal Decomposition (POD) method is applied for the discretization of the electrophysiology equations in several configurations, as for instance the simulation of a myocardial infarction. Also, the method is used in order to solve some parameters identification problems such as the identification of an infarcted zone using the Electrocardiogram measures and for the efficient simulation of restitution curves. To circumvent some limitations of the POD method, a new reduced order method based on the Approximated Lax Pairs (ALP) is investigated. This method is applied to the forward and inverse problems. Finally, a new reduced order algorithm is proposed, based on the ALP and the Discrete Empirical Interpolation methods. This new approach significantly improves the efficiency of the original ALP algorithm and allow us to consider more complex models used in electrophysiology.