Summary: | L'étude des cellules souches est l'un des champs de recherches les plus importants dans le domaine biomédical. La vision par ordinateur et le traitement d'images ont été fortement mis en avant dans ce domaine pour le développement de solutions automatiques de culture et d'observation de cellules. Ce travail de thèse propose une nouvelle méthodologie pour l'observation et la modélisation de la prolifération de cellule souche neuronale sous microscope à contraste de phase. À chaque observation réalisée par le microscope durant la prolifération, notre système extrait un modèle en trois dimensions de la structure de cellules observées. Cela est réalisé par une suite de processus d'analyse, synthèse et sélection. Premièrement, une analyse de la séquence d'images de contraste de phase permet la segmentation de la neurosphère et des cellules la constituant. À partir de ces informations, combinées avec des connaissances a priori sur les cellules et le protocole de culture, plusieurs modèles 3-D possibles sont générés. Ces modèles sont finalement évalués et sélectionnés par rapport à l¿image d¿observation, grâce à une méthode de recalage 3-D vers 2-D. A travers cette approche, nous présentons un outil automatique de visualisation et d'observation de la prolifération de cellule souche neuronale sous microscope à contraste de phase. === The study of stem cells is one of the most important fields of research in the biomedical field. Computer vision and image processing have been greatly emphasized in this area for the development of automated solutions for culture and observation of cells. This work proposes a new methodology for observing and modelling the proliferation of neural stem cell under a phase contrast microscope. At each time lapse observation performed by the microscope during the proliferation, the system determines a three-dimensional model of the structure formed by the observed cells. This is achieved by a framework combining analysis, synthesis and selection process. First, an analysis of the images from the microscope segments the neurosphere and the constituent cells. With this analysis, combined with prior knowledge about the cells and their culture protocol, several 3-D possible models are generated through a synthesis process. These models are finally selected and evaluated according to their likelihood with the microscope image using a 3-D to 2-D registration method. Through this approach, we present an automatic visualisation tool and observation of the proliferation of neural stem cell under a phase contrast microscope.
|