Summary: | Ces dernières décennies, nous avons assisté à l'émergence du concept de copule en modélisation statistique. Les copules permettent de faire une analyse séparée des marges et de la structure de dépendance induite par une distribution statistique. Cette séparation facilite l'incorporation de lois non gaussiennes, et en particulier la prise en compte des dépendances non linéaires entre les variables aléatoires. La finance et l'hydrologie sont deux exemples de sciences où les copules sont très utilisées. Cependant, bien qu'il existe beaucoup de familles de copules bivariées, le choix reste limité en plus grande dimension: la construction de copules multivariées/en grande dimension reste un problème ouvert aujourd'hui. Cette thèse présente trois contributions à la modélisation et à l'inférence de copules en grande dimension. Le premier modèle proposé s'écrit comme un produit de copules bivariées, où chaque copule bivariée se combine aux autres via un graphe en arbre. Elle permet de prendre en compte les différents degrés de dépendance entre les différentes paires. La seconde copule est un modèle à facteurs basé sur une classe nonparamétrique de copules bivariées. Elle permet d'obtenir un bon équilibre entre flexibilité et facilité d'utilisation. Cette thèse traite également de l'inférence paramétrique de copules dans le cas général, en établissant les propriétés asymptotiques d'un estimateur des moindres carrés pondérés basé sur les coefficients de dépendance. Les modèles et méthodes proposés sont appliqués sur des données hydrologiques (pluies et débits de rivières). === In the last decades, copulas have been more and more used in statistical modeling. Their popularity owes much to the fact that they allow to separate the analysis of the margins from the analysis of the dependence structure induced by the underlying distribution. This renders easier the modeling of non Gaussian distributions, and, in particular, it allows to take into account non linear dependencies between random variables. Finance and hydrology are two examples of scientific fields where the use of copulas is nowadays standard. However, while many bivariate families exist in the literature, multivariate/high dimensional copulas are much more difficult to construct. This thesis presents three contributions to copula modeling and inference, with an emphasis on high dimensional problems. The first model writes as a product of bivariate copulas and is underlain by a tree structure where each edge represents a bivariate copula. Hence, we are able to model different pairs with different dependence properties. The second one is a factor model built on a nonparametric class of bivariate copulas. It exhibits a good balance between tractability and flexibility. This thesis also deals with the parametric inference of copula models in general. Indeed, the asymptotic properties of a weighted least-squares estimator based on dependence coefficients are established. The models and methods have been applied to hydrological data (flow rates and rain falls).
|