Summary: | Le sang est un fluide complexe mis en écoulement par la pompe très peu puissante qu'est le cœur (environ 1 W), dans un réseau branché de plusieurs milliers de kilomètres de vaisseaux. Pour que cela soit réalisable, il se peut que les propriétés mécaniques du sang contribuent à l'entretien de l'écoulement. Malgré le nombre important d'études sur la rhéologie du sang, sa viscoélasticité n'a jamais été caractérisée en cisaillement simple. Le rôle physiologique du caillot est, lui, d'éviter un épanchement excessif de sang en présence d'une brèche vasculaire. Une de ses fonctions principales est donc de résister aux contraintes générées par l'écoulement sanguin, c'est-à-dire d'avoir une résistance mécanique appropriée. Que ce soit pour la caractérisation mécanique du sang ou du caillot, le principal verrou est l'absence de méthode de mesure adaptée à un matériau peu consistant, et dont les propriétés mécaniques sont en évolution rapide. Il est donc nécessaire de produire une méthode de mesure adéquate, couplée à un système de mesure assez sensible. Dans ce travail, nous présentons la méthode de rhéométrie que nous avons développée dans ce but, baptisée Optimal Fourier Rheometry (OFR). Cette technique a été validée avec succès sur différents matériaux modèles de plus en plus complexes : une huile newtonienne, une gomme viscoélastique (PDMS), une suspension de micelles vermiformes (CpCl Nasal) et enfin un alginate dentaire tout au long de sa gélification. Nous montrons ainsi que l'OFR est une technique de mesure fonctionnelle, fiable et optimale temporellement. Elle permet le suivi de grandeurs mécaniques dont le temps caractéristique de mutation est très inférieur à la minute. En raison de la sédimentation des globules rouges, le sang est un fluide évoluant dans le temps. Par conséquent l'OFR est bien adaptée pour la mesure de ses propriétés viscoélastiques. Pour nous affranchir de la variabilité très importante du sang de témoins, nous avons balayé de façon systématique la concentration en les composants sanguins les plus abondants sur des suspensions de globules rouges lavés. De façon a priori surprenante, nous montrons qu'en présence de fibrinogène, le sang présente une élasticité importante, du même ordre de grandeur, voire plus grande que sa viscosité. Cette élasticité augmente avec la concentration en fibrinogène et l'hématocrite et provient du réseau percolé de globules rouges agrégés de dimension fractale 2.08 qui existe dans la suspension lorsqu'elle est peu cisaillée. L'OFR a également été appliquée au suivi de la coagulation activée par voie intrinsèque et extrinsèque. Cela a permis de montrer que le procédé d'activation n'avait d'effet que sur la cinétique de la réaction, mais que cela ne changeait pas les étapes mécaniques observées. L'OFR permet grâce à sa résolution fréquentielle élevée et son temps de mesure minimal, d'affirmer que le processus de coagulation du sang n'est pas une transition sol-gel. === Blood is a complex fluid set into flow by the heart, which is a very low power pump (approximately 1 W), in a connected network consisting of several thousand kilometers of vessels. To do so, it seems reasonable that the mechanical properties of blood contribute to the maintenance of the flow. In spite of the important number of studies on blood rheology, the viscoelasticity of blood has never been characterized in simple shear. The physiological role of the blood clot is to avoid an excessive effusion of blood in the presence of a vascular breach. Thus, it has to resist to the stress induced by the blood flow. So, one of its essential functions is this mechanical resistance. Whether it is for the mechanical characterization of the blood or the clot, the main obstacle is the absence of viscoelasticity measurement techniques adapted to a low viscosity material evolving rapidly in time. So, it is necessary to provide an adapted measurement method, coupled with a sensitive enough measurement. In this work, we present the new rheometry method we developed, named Optimal Fourier Rheometry (OFR) as it is optimal both in duration and signal to noise ratio This method was successfully validated on materials of increasing complexity: a Newtonian oil, a viscoelastic gum (PDMS), a suspension of wormlike micelles (CpCl Nasal) and a dental alginate during its gelation. Because of the sedimentation of red blood cells, the mechanical properties of blood are evolving in time. Consequently the use of the OFR is well suited for the measurement of its viscoelastic properties. A systematic scanning of the concentrations in the most abundant blood components added to washed blood allowed to highlight the most important parameters. Our results show that blood has a surprisingly large elasticity, which is of the same order of magnitude as the viscosity of the material. This elasticity increases with fibrinogen concentration and hematocrit. When these two parameters are in the physiological range, a percolated network of aggregated red blood cells exists in the suspension of fractal dimension 2.08. The, OFR was applied to the monitoring of blood clot formation. The activation by intrinsic and extrinsic pathway was used on whole blood. It showed that the process of activation affects only the kinetics of the reaction, but does not change the observed mechanical s. Due to its high frequency resolution and minimal measurement time, OFR shows that coagulation is not a gelation process.
|