Summary: | Les transitions de phase près d'un point critique - dites du second ordre - sont un sujet toujours d'actualité en raison des nombreux phénomènes critiques intéressants tels que la force de Casimir critique, les problèmes de confinements ou les phénomènes hors d'équilibre suivant une trempe au point critique. Cette thèse vise à étudier expérimentalement certains phénomènes engendrés près d'un point critique. La thèse est divisée en deux axes : le premier consiste à développer plusieurs systèmes expérimentaux qui permettront de mesurer essentiellement la viscosité, par l'intermédiaire des fluctuations thermiques à l'échelle micrométrique. Le deuxième axe consiste à trouver et caractériser des mélanges binaires présentant une transition de phase du second ordre dans lesquelles on souhaite faire des mesures. Les enjeux de ces systèmes expérimentaux sont d'avoir une régulation en température précise, une sonde de mesure sensible aux fluctuations thermiques et/ou à des forces de l'ordre du pN, et un échantillon fiable et reproductible présentant un point critique accessible expérimentalement. Nous avons ainsi monté à partir d'un microscope à force atomique (AFM) déjà présent au laboratoire, un système de mesure de viscosité à sonde AFM fibrée. Malgré sa faible efficacité en terme de sonde de mesure métrologique, nous avons pu décrire et développer un modèle de couplage de modes de vibration permettant de comprendre la mécanique de microleviers AFM fibrés. J'ai également développé au laboratoire la mesure de microscopie dynamique différentielle qui permet de faire des mesures à sondes multiples contrairement au premier montage. J'ai discuté de la précision de la mesure dans le cadre de notre objectif d'étude des fluctuations critiques. En ce qui concerne l'échantillon de mesure, nous avons étudié plusieurs mélanges binaires que nous avons caractérisés par des méthodes classiques de turbidité et diffusion statique de la lumière. Cette caractérisation nous a permis de connaître les mélanges binaires pour les utiliser dans un troisième système de mesure : billes micrométriques piégées dans des pinces optiques déjà monté au laboratoire. Nous y avons rajouté un système de régulation thermique fait maison pour être exploité avec les contraintes de la pince optique. Ces tests ont fait apparaître un phénomène inattendu d'oscillations de transition de phase induites par laser. Nous avons développé un modèle pour les décrire. Enfin, des expériences préliminaires - toujours avec les pinces optiques dans les mélanges binaires - nous ont permis d'observer qualitativement des effets de l'approche au point critique par des mesures de viscosité et d'interaction type force de Casimir critique. === Phase transitions near a critical point, or second order phase transitions, are still a recent object of studies because of the large amount of interesting critical phenomena as the critical Casimir force, confinements problems or out of equilibrium phenomena following a quench at the critical point. This thesis experimentally studies phenomena near a critical point. This manuscript is divided in two parts : the first one consists in building several experimental set-up which measure viscosity through thermal fluctuation at micrometric scale. The second part consists in finding and characterize binary mixtures which show a second order phase transition. Preliminary results have been done in these samples. One of the principal points of these experimental set-up are a well regulated temperature, a probe sensitive to thermal fluctuation and/or pN forces and a reproducible binary mixture which presents a critical point easy to reach experimentally. We mounted from an Atomic Force Microscope (AFM) already built in the laboratory, a hanging-fiber probe to measure viscosity of liquids. Despite its weak efficiency as a metrologic probe, we described and developed a mode coupling model which let us understand mechanics of hanging-fiber probes. I also developed in the lab the dynamic differential microscopy technique (DDM) which do measurements with several probes. I discussed about the measure precision with in mind the aim of studying critical fluctuations. For the choice of the sample, we studied several binary mixtures. We characterized them by classical methods as turbidity measurements and static light scattering. These characterizations let us learn about binary mixtures in order to use them in a third experimental set-up : beads trapped in an optical tweezers already built in the lab. We added to it a home-made thermal regulation which can be used with the constraints of optical tweezers. These tests showed an unexpected phenomenon of oscillating phase transition induce by laser. We developed a model to describe it. At last, preliminary experiments with optical tweezers in binary mixtures showed qualitative effects of an approach near a critical point on the viscosity and on interactions between beads as critical Casimir force.
|