Summary: | L'objectif de ces travaux de thèse est de proposer des approches de modélisation et d'expérimentation de l'impact de structures déformables et indéformables sur différents milieux. Différents modèles analytiques et des simulations numériques sont développés en comparaison aux résultats expérimentaux. Une première partie se consacre à la caractérisation de la similitude entre la réponse à l'impact à l'eau d'un solide et la réponse d'un solide impactant une structure déformable. Des simulations éléments finis (EF) et SPH sont réalisées pour l'impact à l'eau d'un tube cylindrique (sans rupture). Un modèle analytique d'impact à l'eau est proposé pour prédire l'évolution de l'effort (pic, durée). L'analyse des résultats permet de dimensionner un programmateur d'impact solide reproduisant le pic d'effort. Des simulations EF de l'impact sur un tube cylindrique, à géométrie adapté, dans la direction longitudinale, sont réalisées et comparées à quelques expériences tests. Le «flambage dynamique» (dû au comportement inélastique du matériau et aux ondes de déformations) des tubes est alors observé. Une seconde partie traite du cas de la perforation sous impact d'une tôle mince à faibles vitesses d'impact (< 10 m/s, vitesse de déformation < 1000 s-1). Des essais sur puits de chute instrumenté (force, déplacement, déformée de tôle, avancée de fissure) sont analysés. Des simulations EF en éléments coques avec un critère de rupture ductile par endommagement sont réalisées. Les paramètres de rupture dynamique sont identifiés par méthode inverse à l'aide d'essais de résilience Charpy sur l'alliage d'aluminium de désignation 2024 T3. Une analyse des pics de force lors de l'impact permet une meilleure compréhension des mécanismes de perforation. En parallèle, un nouveau modèle analytique, basé sur les énergies impliquées lors de l'impact, est proposé et comparé aux simulations EF. L'étude numérique de la perforation est étendue aux grandes vitesses d'impact et de déformation (100 - 1000 m/s, vitesse de déformation <100 000 s-1) pour identifier les transitions des différents mécanismes de perforation connus (pétalisation, fragmentation des pétales, fragmentation complète). === The objective of this work is to propose approaches to model and to assess experimentally the structural impact on different media. A variety of analytic models and numerical simulations are developed comparing to experimental results. The first part of this work presents a discussion on the similitude between a water impact and an impact on a deformable solid structure. Water impact simulations of a deformable cylinder (without rupture) are performed by finite elements (FE, Coupled Eulerian Lagrangian) and SPH analysis. An analytical model of water impact is proposed for the prediction of peak force evolution. The analysis of results permits to design an impact programmer reproducing this peak force. FE longitudinal impact simulations on cylindrical tubes, with an adapted geometry, are performed and compared with some experiments. The “dynamic buckling” of tubes under impact (due to the material inelastic behavior and to strain waves) is observed. The second part deals with the low velocity perforation (< 10 m/s, strain rate < 1000 s-1) of thin plates. Some experiments on an instrumented drop test (force, displacement, plate shape, crack propagation) are analyzed. Shell FE simulations, with a damage rupture criteria implemented are performed. Parameters are identified by inverse method with the help of Charpy tests made on 2024 T3 aluminum alloy. An analysis of the peak force, during impact, leads to a good understanding of the perforation mechanism. In parallel, a new analytical model, based on an energetic approach of the perforation, is proposed and compared with FE simulations. The numerical perforation study is extended to high velocities and high strain rates (100 - 1000m/s, strain rate < 100 000 s-1) in order to identify different well-known transitions of perforation (Petalisation, petals' fragmentation, total plate's fragmentation).
|