Summary: | Les avalanches de débris, qui résultent du démantèlement des flancs des édifices volcaniques et montagneux, sont des écoulements granulaires rapides et dangereux dont le monteur est la gravité et qui présentent des distances de transport extrêmement importantes. La dynamique de leur mise en place et leurs mécanismes de transport permettant cette très grande mobilité sont des phénomènes qui demeurent encore mal compris. De nombreux modèles existent pour expliquer la grande mobilité des avalanches de débris et incluent des processus basés sur la lubrification ou la fluidification de la masse granulaire mais également sur le phénomène de désintégration dynamique des éléments. Cependant la grande majorité des modèles proposés souffre du manque d’observations de terrain et de quantification de l’évolution des matériaux au cours de leur transport au sein de la masse granulaire. Afin d’identifier les principaux mécanismes de transport des avalanches de débris, nous proposons dans ce travail une étude de terrain détaillée de dépôts d’avalanches de débris volcaniques qui résultent du démantèlement d’un volcan bouclier océanique, le Piton des Neiges (île de La Réunion, océan Indien). L’approche est couplée à un examen morphométrique (dimension fractale et circularité), exoscopique et granulométrique des particules présentes dans les dépôts. Elle est complétée par l’examen de la fabrique des dépôts basée sur l’anisotropie de la susceptibilité magnétique (ASM). Les données obtenues nous permettent de mettre en évidence une évolution de la dynamique de transport et de mise en place des dépôts d’avalanches de débris depuis les zones sources jusqu’aux domaines de dépôt distaux. On montre également que la désintégration dynamique et le gonflement dispersif qui l’accompagne opèrent tout au long du transport et à toutes les échelles au-dessus d’une limite inférieure de broyage à 500 μm. En dessous de cette limite, la réduction granulométrique résulte uniquement de processus d’attrition par friction entre les particules. La grande mobilité des avalanches de débris pourrait ainsi être expliquée par l’effet combiné de la libération d’énergie élastique par la désintégration dynamique des particules > 500μm et par une réduction de la friction interne à la matrice liée aux interactions dispersives des particules fines (< 500 μm). L’ensemble des données permettent également de préciser les directions de transport et l’ampleur des avalanches de débris liées aux déstabilisations du massif du Piton des Neiges. === Debris avalanches, resulting from flank collapses that shape volcanic and mountainous edifices are rapidand dangerous gravity-driven granular flows that travel long run out distances. The dynamic and the transport mechanisms behind this high mobility remain poorly understood. The numerous models proposed to explain this high mobility include processes based on lubrication or fluidisation of the granular mass of the flow body, but also the dynamic disintegration of the transported particles. To date,all these proposed mechanisms lack observational support and quantification of the state of the particles of the granular mass during the transport. To identify the main transport mechanisms, we propose here detailed field studies of volcanic debris avalanches deposits resulting of flank-collapse events on an oceanic shield volcano, the Piton des Neiges (La Réunion Island, Indian Ocean). This study has been combined with morphometric (fractal dimension and circularity), exoscopic and grain-size analyses. Moreover, the fabric of the deposits has been investigated by with the characteristics of the anisotropy of the magnetic susceptibility (ASM). From these data we highlight a proximal to distal evolution of the debris avalanches transport and emplacement dynamics. We demonstrate that syn-transport dynamic disintegration continuously operates with the distance from the source down to a grinding limit of 500μm. Below this limit, the particle size reduction exclusively results from the attrition of the particles by frictional interactions. Thus, the exceptional mobility of debris avalanches may be explained by thecombined effect of elastic energy release during the dynamic disintegration of the larger clasts (> 500μm) and frictional reduction within the matrix due to the dispersive interactions between the finer particles (< 500 μm). All these data also allow to specify the transport direction and the approximate size of the debris avalanches related to the Piton des Neiges destabilisations.
|