Inversion for textured images : unsupervised myopic deconvolution, model selection, deconvolution-segmentation
Ce travail est dédié à la résolution de plusieurs problèmes de grand intérêt en traitement d’images : segmentation, choix de modèle et estimation de paramètres, pour le cas spécifique d’images texturées indirectement observées (convoluées et bruitées). Dans ce contexte, les contributions de cette th...
Main Author: | Văcar, Cornelia Paula |
---|---|
Other Authors: | Bordeaux |
Language: | en |
Published: |
2014
|
Subjects: | |
Online Access: | http://www.theses.fr/2014BORD0131/document |
Similar Items
-
Unsupervised joint deconvolution and segmentation method for textured images: a Bayesian approach and an advanced sampling algorithm
by: Cornelia Vacar, et al.
Published: (2019-03-01) -
Approximate Deconvolution Reduced Order Modeling
by: Xie, Xuping
Published: (2017) -
Sparseness-constrained seismic deconvolution with curvelets
by: Hennenfent, Gilles, et al.
Published: (2008) -
Binarized Encoder-Decoder Network and Binarized Deconvolution Engine for Semantic Segmentation
by: Hyunwoo Kim, et al.
Published: (2021-01-01) -
deconvolveR: A G-Modeling Program for Deconvolution and Empirical Bayes Estimation
by: Balasubramanian Narasimhan, et al.
Published: (2020-09-01)