Etude de la stratégie de réécriture de termes k-bornée

Nous introduisons la stratégie de réécriture de termes k-bornée (bo(k), pour k entier) pour les systèmes linéaires. Cette stratégie est associée à une classe de systèmes dits k-bornés LBO(k). Nous démontrons que les systèmes de la classe LBO (union des LBO(k) pour tous les k), inversent-préservent l...

Full description

Bibliographic Details
Main Author: Sylvestre, Marc
Other Authors: Bordeaux
Language:fr
Published: 2014
Subjects:
Online Access:http://www.theses.fr/2014BORD0121/document
id ndltd-theses.fr-2014BORD0121
record_format oai_dc
spelling ndltd-theses.fr-2014BORD01212019-10-06T03:29:20Z Etude de la stratégie de réécriture de termes k-bornée Study of the k-bounded term rewriting strategy Réécriture de termes, Stratégies Préservation de la reconnaissabilité, Terminaison Term rewriting, Strategies Préservation of recognizability, Termination Nous introduisons la stratégie de réécriture de termes k-bornée (bo(k), pour k entier) pour les systèmes linéaires. Cette stratégie est associée à une classe de systèmes dits k-bornés LBO(k). Nous démontrons que les systèmes de la classe LBO (union des LBO(k) pour tous les k), inversent-préservent la reconnaissabilité. Nous montrons que les différents problèmes de terminaison et d'inverse-terminaison pour la stratégie bo(k) sont décidables et utilisons ce résultat pour démontrer la décidabilité de ces problèmes pour des sous-classes de LBO: les classes de systèmes linéaires fortement k-bornés: LFBO(k). La classe LFBO (union des LFBO(k)) inclut strictement de nombreuses classes de systèmes connues: les systèmes inverses basiques à gauche, linéaires growing, et linéaires inverses Finite-Path-Overlapping. Le problème de l'appartenance à LFBO(k) est décidable alors qu'il ne l'est pas pour LBO(0). Pour les mots, nous prouvons que la stratégie bo(k) préserve l'algébricité. Nous étendons la notion de réécriture k-bornée aux systèmes de réécriture de termes linéaires à gauche. Comme dans le cas linéaire, nous associons à cette stratégie la classe des systèmes linéaires à gauche k-bornés BO(k) qui étend la classe LBO(k). Nous démontrons que les systèmes de cette classe inverse-préservent la reconnaissabilité.Comme dans le cas linéaire, nous définissons ensuite la classe des systèmes fortement kbornés FBO(k), qui étend la classe LFBO(k). Nous montrons que le problème de l'appartenance à FBO(k) est décidable. La classe FBO contient strictement la classe des systèmes growing linéaires à gauche. We introduce k-bounded term rewriting for linear systems (bo(k), for k integer). This strategy is associated with the class of k-bounded systems LBO(k). We show that the systems in the class LBO (union of the LBO(k) for all k), inverse-preserve recognizability. We show that the problems of termination and inverse-termination for the bo(k) strategy are decidable and use this result to show the decidability of these two problems for subclasses of LBO: the classes of linear systems strongly k-bounded: LFBO(k). The class LFBO (union of the LFBO(k)) includes strictly many known classes: the inverse left-basic systems, the linear growing systems, the linear inverse Finite-Path-Overlapping systems. Membership to LFBO(k) is decidable but this is not hte case for LBO(0). For words, we show that the bo(k) strategy preserves algebricity. We extend k-bounded rewriting to left-linear systems. As in the linear case, we associate a class of systems to the strategy: the class of left-linear kbounded systems BO(k) which extends LBO(k). We show that the systems in BO(k) inversepreserve recognizability. As in the linear case, we define the class of strongly k-bounded systems FBO(k), which extends LFBO(k). Membership to FBO(k) is proved decidable. The FBO class contains stricly the class of left-linear growing systems. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2014BORD0121/document Sylvestre, Marc 2014-10-01 Bordeaux Durand, Irène Senizergues, Géraud
collection NDLTD
language fr
sources NDLTD
topic Réécriture de termes,
Stratégies
Préservation de la reconnaissabilité,
Terminaison
Term rewriting,
Strategies
Préservation of recognizability,
Termination

spellingShingle Réécriture de termes,
Stratégies
Préservation de la reconnaissabilité,
Terminaison
Term rewriting,
Strategies
Préservation of recognizability,
Termination

Sylvestre, Marc
Etude de la stratégie de réécriture de termes k-bornée
description Nous introduisons la stratégie de réécriture de termes k-bornée (bo(k), pour k entier) pour les systèmes linéaires. Cette stratégie est associée à une classe de systèmes dits k-bornés LBO(k). Nous démontrons que les systèmes de la classe LBO (union des LBO(k) pour tous les k), inversent-préservent la reconnaissabilité. Nous montrons que les différents problèmes de terminaison et d'inverse-terminaison pour la stratégie bo(k) sont décidables et utilisons ce résultat pour démontrer la décidabilité de ces problèmes pour des sous-classes de LBO: les classes de systèmes linéaires fortement k-bornés: LFBO(k). La classe LFBO (union des LFBO(k)) inclut strictement de nombreuses classes de systèmes connues: les systèmes inverses basiques à gauche, linéaires growing, et linéaires inverses Finite-Path-Overlapping. Le problème de l'appartenance à LFBO(k) est décidable alors qu'il ne l'est pas pour LBO(0). Pour les mots, nous prouvons que la stratégie bo(k) préserve l'algébricité. Nous étendons la notion de réécriture k-bornée aux systèmes de réécriture de termes linéaires à gauche. Comme dans le cas linéaire, nous associons à cette stratégie la classe des systèmes linéaires à gauche k-bornés BO(k) qui étend la classe LBO(k). Nous démontrons que les systèmes de cette classe inverse-préservent la reconnaissabilité.Comme dans le cas linéaire, nous définissons ensuite la classe des systèmes fortement kbornés FBO(k), qui étend la classe LFBO(k). Nous montrons que le problème de l'appartenance à FBO(k) est décidable. La classe FBO contient strictement la classe des systèmes growing linéaires à gauche. === We introduce k-bounded term rewriting for linear systems (bo(k), for k integer). This strategy is associated with the class of k-bounded systems LBO(k). We show that the systems in the class LBO (union of the LBO(k) for all k), inverse-preserve recognizability. We show that the problems of termination and inverse-termination for the bo(k) strategy are decidable and use this result to show the decidability of these two problems for subclasses of LBO: the classes of linear systems strongly k-bounded: LFBO(k). The class LFBO (union of the LFBO(k)) includes strictly many known classes: the inverse left-basic systems, the linear growing systems, the linear inverse Finite-Path-Overlapping systems. Membership to LFBO(k) is decidable but this is not hte case for LBO(0). For words, we show that the bo(k) strategy preserves algebricity. We extend k-bounded rewriting to left-linear systems. As in the linear case, we associate a class of systems to the strategy: the class of left-linear kbounded systems BO(k) which extends LBO(k). We show that the systems in BO(k) inversepreserve recognizability. As in the linear case, we define the class of strongly k-bounded systems FBO(k), which extends LFBO(k). Membership to FBO(k) is proved decidable. The FBO class contains stricly the class of left-linear growing systems.
author2 Bordeaux
author_facet Bordeaux
Sylvestre, Marc
author Sylvestre, Marc
author_sort Sylvestre, Marc
title Etude de la stratégie de réécriture de termes k-bornée
title_short Etude de la stratégie de réécriture de termes k-bornée
title_full Etude de la stratégie de réécriture de termes k-bornée
title_fullStr Etude de la stratégie de réécriture de termes k-bornée
title_full_unstemmed Etude de la stratégie de réécriture de termes k-bornée
title_sort etude de la stratégie de réécriture de termes k-bornée
publishDate 2014
url http://www.theses.fr/2014BORD0121/document
work_keys_str_mv AT sylvestremarc etudedelastrategiedereecrituredetermeskbornee
AT sylvestremarc studyofthekboundedtermrewritingstrategy
_version_ 1719262817638416384