Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions

Dans l'ère de l'information et de la connaissance, la traduction automatique (TA) devientprogressivement un outil indispensable pour transposer la signification d'un texte d'une langue source versune langue cible. La TA des noms propres (NP), en particulier, joue un rôle crucial...

Full description

Bibliographic Details
Main Author: Phan Thi Thanh, Thao
Other Authors: Besançon
Language:en
fr
vi
Published: 2014
Subjects:
418
Online Access:http://www.theses.fr/2014BESA1002/document
id ndltd-theses.fr-2014BESA1002
record_format oai_dc
collection NDLTD
language en
fr
vi
sources NDLTD
topic Noms propres
Prétraitement
Corpus parallèle
Qualité de traduction automatique
Erreur de traduction
Proper name
Pre-processing
Parallel corpus
Machine translation quality
English-Vietnamese
French-Vietnamese
Translation error
418
spellingShingle Noms propres
Prétraitement
Corpus parallèle
Qualité de traduction automatique
Erreur de traduction
Proper name
Pre-processing
Parallel corpus
Machine translation quality
English-Vietnamese
French-Vietnamese
Translation error
418
Phan Thi Thanh, Thao
Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
description Dans l'ère de l'information et de la connaissance, la traduction automatique (TA) devientprogressivement un outil indispensable pour transposer la signification d'un texte d'une langue source versune langue cible. La TA des noms propres (NP), en particulier, joue un rôle crucial dans ce processus,puisqu'elle permet une identification précise des personnes, des lieux, des organisations et des artefacts àtravers les langues. Malgré un grand nombre d'études et des résultats significatifs concernant lareconnaissance d'entités nommées (dont le nom propre fait partie) dans la communauté de TAL dans lemonde, il n'existe presque aucune recherche sur la traduction automatique des noms propres (TANP) pourle vietnamien. En raison des caractéristiques différentes d'écriture de NP, la translittération ou la transcription etla traduction de plusieurs de langues incluant l'anglais, le français, le russe, le chinois, etc. vers levietnamien, le TANP de ces langues vers le vietnamien est stimulant et problématique. Cette étude seconcentre sur les problèmes de TANP d’anglais vers le vietnamien et de français vers le vietnamienrésultant du moteurs courants de la TA et présente les solutions de prétraitement de ces problèmes pouraméliorer la qualité de la TA. A travers l'analyse et la classification d'erreurs de la TANP faites sur deux corpus parallèles detextes avec PN (anglais-vietnamien et français-vietnamien), nous proposons les solutions concernant deuxproblématiques importantes: (1) l'annotation de corpus, afin de préparer des bases de données pour leprétraitement et (2) la création d'un programme pour prétraiter automatiquement les corpus annotés, afinde réduire les erreurs de la TANP et d'améliorer la qualité de traduction des systèmes de TA, tels queGoogle, Vietgle, Bing et EVTran. L'efficacité de différentes méthodes d'annotation des corpus avec des NP ainsi que les tauxd'erreurs de la TANP avant et après l'application du programme de prétraitement sur les deux corpusannotés est comparés et discutés dans cette thèse. Ils prouvent que le prétraitement réduitsignificativement le taux d'erreurs de la TANP et, par la même, contribue à l'amélioration de traductionautomatique vers la langue vietnamienne. === Machine translation (MT) has increasingly become an indispensable tool for decoding themeaning of a text from a source language into a target language in our current information and knowledgeera. In particular, MT of proper names (PN) plays a crucial role in providing the specific and preciseidentification of persons, places, organizations, and artefacts through the languages. Despite a largenumber of studies and significant achievements of named entity recognition in the NLP communityaround the world, there has been almost no research on PNMT for Vietnamese language. Due to the different features of PN writing, transliteration or transcription and translation from a variety of languages including English, French, Russian, Chinese, etc. into Vietnamese, the PNMT from those languages into Vietnamese is still challenging and problematic issue. This study focuses on theproblems of English-Vietnamese and French-Vietnamese PNMT arising from current MT engines. First,it proposes a corpus-based PN classification, then a detailed PNMT error analysis to conclude with somepre-processing solutions in order to improve the MT quality. Through the analysis and classification of PNMT errors from the two English-Vietnamese and French-Vietnamese parallel corpora of texts with PNs, we propose solutions concerning two major issues:(1)corpus annotation for preparing the pre-processing databases, and (2)design of the pre-processingprogram to be used on annotated corpora to reduce the PNMT errors and enhance the quality of MTsystems, including Google, Vietgle, Bing and EVTran. The efficacy of different annotation methods of English and French corpora of PNs and the results of PNMT errors before and after using the pre-processing program on the two annotated corporaare compared and discussed in this study. They prove that the pre-processing solution reducessignificantly PNMT errors and contributes to the improvement of the MT systems’ for Vietnameselanguage.
author2 Besançon
author_facet Besançon
Phan Thi Thanh, Thao
author Phan Thi Thanh, Thao
author_sort Phan Thi Thanh, Thao
title Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
title_short Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
title_full Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
title_fullStr Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
title_full_unstemmed Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
title_sort machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions
publishDate 2014
url http://www.theses.fr/2014BESA1002/document
work_keys_str_mv AT phanthithanhthao machinetranslationofpropernamesfromenglishandfrenchintovietnameseanerroranalysisandsomeproposedsolutions
AT phanthithanhthao traductionautomatiquedesnomspropresdelanglaisetdufrancaisverslevietnamienanalysedeserreursetquelquessolutions
_version_ 1718483427739566080
spelling ndltd-theses.fr-2014BESA10022017-06-30T04:43:11Z Machine translation of proper names from english and french into vietnamese : an error analysis and some proposed solutions Traduction automatique des noms propres de l’anglais et du français vers le vietnamien : analyse des erreurs et quelques solutions Noms propres Prétraitement Corpus parallèle Qualité de traduction automatique Erreur de traduction Proper name Pre-processing Parallel corpus Machine translation quality English-Vietnamese French-Vietnamese Translation error 418 Dans l'ère de l'information et de la connaissance, la traduction automatique (TA) devientprogressivement un outil indispensable pour transposer la signification d'un texte d'une langue source versune langue cible. La TA des noms propres (NP), en particulier, joue un rôle crucial dans ce processus,puisqu'elle permet une identification précise des personnes, des lieux, des organisations et des artefacts àtravers les langues. Malgré un grand nombre d'études et des résultats significatifs concernant lareconnaissance d'entités nommées (dont le nom propre fait partie) dans la communauté de TAL dans lemonde, il n'existe presque aucune recherche sur la traduction automatique des noms propres (TANP) pourle vietnamien. En raison des caractéristiques différentes d'écriture de NP, la translittération ou la transcription etla traduction de plusieurs de langues incluant l'anglais, le français, le russe, le chinois, etc. vers levietnamien, le TANP de ces langues vers le vietnamien est stimulant et problématique. Cette étude seconcentre sur les problèmes de TANP d’anglais vers le vietnamien et de français vers le vietnamienrésultant du moteurs courants de la TA et présente les solutions de prétraitement de ces problèmes pouraméliorer la qualité de la TA. A travers l'analyse et la classification d'erreurs de la TANP faites sur deux corpus parallèles detextes avec PN (anglais-vietnamien et français-vietnamien), nous proposons les solutions concernant deuxproblématiques importantes: (1) l'annotation de corpus, afin de préparer des bases de données pour leprétraitement et (2) la création d'un programme pour prétraiter automatiquement les corpus annotés, afinde réduire les erreurs de la TANP et d'améliorer la qualité de traduction des systèmes de TA, tels queGoogle, Vietgle, Bing et EVTran. L'efficacité de différentes méthodes d'annotation des corpus avec des NP ainsi que les tauxd'erreurs de la TANP avant et après l'application du programme de prétraitement sur les deux corpusannotés est comparés et discutés dans cette thèse. Ils prouvent que le prétraitement réduitsignificativement le taux d'erreurs de la TANP et, par la même, contribue à l'amélioration de traductionautomatique vers la langue vietnamienne. Machine translation (MT) has increasingly become an indispensable tool for decoding themeaning of a text from a source language into a target language in our current information and knowledgeera. In particular, MT of proper names (PN) plays a crucial role in providing the specific and preciseidentification of persons, places, organizations, and artefacts through the languages. Despite a largenumber of studies and significant achievements of named entity recognition in the NLP communityaround the world, there has been almost no research on PNMT for Vietnamese language. Due to the different features of PN writing, transliteration or transcription and translation from a variety of languages including English, French, Russian, Chinese, etc. into Vietnamese, the PNMT from those languages into Vietnamese is still challenging and problematic issue. This study focuses on theproblems of English-Vietnamese and French-Vietnamese PNMT arising from current MT engines. First,it proposes a corpus-based PN classification, then a detailed PNMT error analysis to conclude with somepre-processing solutions in order to improve the MT quality. Through the analysis and classification of PNMT errors from the two English-Vietnamese and French-Vietnamese parallel corpora of texts with PNs, we propose solutions concerning two major issues:(1)corpus annotation for preparing the pre-processing databases, and (2)design of the pre-processingprogram to be used on annotated corpora to reduce the PNMT errors and enhance the quality of MTsystems, including Google, Vietgle, Bing and EVTran. The efficacy of different annotation methods of English and French corpora of PNs and the results of PNMT errors before and after using the pre-processing program on the two annotated corporaare compared and discussed in this study. They prove that the pre-processing solution reducessignificantly PNMT errors and contributes to the improvement of the MT systems’ for Vietnameselanguage. Electronic Thesis or Dissertation Text en fr vi http://www.theses.fr/2014BESA1002/document Phan Thi Thanh, Thao 2014-03-11 Besançon Cardey-Greenfield, Sylviane Hà, Lê An Thomas, Izabella