Summary: | On se place dans le cadre du traitement des signaux audio multicanaux et multi-sources. À partir du mélange de plusieurs sources sonores enregistrées en milieu réverbérant, on cherche à estimer les réponses acoustiques (ou filtres de mélange) entre les sources et les microphones. Ce problème inverse ne peut être résolu qu'en prenant en compte des hypothèses sur la nature des filtres. Notre approche consiste d'une part à identifier mathématiquement les hypothèses nécessaires sur les filtres pour pouvoir les estimer et d'autre part à construire des fonctions de coût et des algorithmes permettant de les estimer effectivement. Premièrement, nous avons considéré le cas où les signaux sources sont connus. Nous avons développé une méthode d'estimation des filtres basée sur une régularisation convexe prenant en compte à la fois la nature parcimonieuse des filtres et leur enveloppe de forme exponentielle décroissante. Nous avons effectué des enregistrements en environnement réel qui ont confirmé l'efficacité de cet algorithme. Deuxièmement, nous avons considéré le cas où les signaux sources sont inconnus, mais statistiquement indépendants. Les filtres de mélange peuvent alors être estimés à une indétermination de permutation et de gain près à chaque fréquence par des techniques d'analyse en composantes indépendantes. Nous avons apporté une étude exhaustive des garanties théoriques par lesquelles l'indétermination de permutation peut être levée dans le cas où les filtres sont parcimonieux dans le domaine temporel. Troisièmement, nous avons commencé à analyser les hypothèses sous lesquelles notre algorithme d'estimation des filtres pourrait être étendu à l'estimation conjointe des signaux sources et des filtres et montré un premier résultat négatif inattendu : dans le cadre de la déconvolution parcimonieuse aveugle, pour une famille assez large de fonctions de coût régularisées, le minimum global est trivial. Des contraintes supplémentaires sur les signaux sources ou les filtres sont donc nécessaires. === This work is focused on the processing of multichannel and multisource audio signals. From an audio mixture of several audio sources recorded in a reverberant room, we wish to estimate the acoustic responses (a.k.a. mixing filters) between the sources and the microphones. To solve this inverse problem one need to take into account additional hypotheses on the nature of the acoustic responses. Our approach consists in first identifying mathematically the necessary hypotheses on the acoustic responses for their estimation and then building cost functions and algorithms to effectively estimate them. First, we considered the case where the source signals are known. We developed a method to estimate the acoustic responses based on a convex regularization which exploits both the temporal sparsity of the filters and the exponentially decaying envelope. Real-world experiments confirmed the effectiveness of this method on real data. Then, we considered the case where the sources signal are unknown, but statistically independent. The mixing filters can be estimated up to a permutation and scaling ambiguity. We brought up an exhaustive study of the theoretical conditions under which we can solve the indeterminacy, when the multichannel filters are sparse in the temporal domain. Finally, we started to analyse the hypotheses under which this algorithm could be extended to the joint estimation of the sources and the filters, and showed a first unexpected results : in the context of blind deconvolution with sparse priors, for a quite large family of regularised cost functions, the global minimum is trivial. Additional constraints on the source signals and the filters are needed.
|